{"title":"On Fuzzy Negations Generated by Fuzzy Implications","authors":"Adam Grabowski","doi":"10.2478/forma-2020-0011","DOIUrl":null,"url":null,"abstract":"Summary We continue in the Mizar system [2] the formalization of fuzzy implications according to the book of Baczyński and Jayaram “Fuzzy Implications” [1]. In this article we define fuzzy negations and show their connections with previously defined fuzzy implications [4] and [5] and triangular norms and conorms [6]. This can be seen as a step towards building a formal framework of fuzzy connectives [10]. We introduce formally Sugeno negation, boundary negations and show how these operators are pointwise ordered. This work is a continuation of the development of fuzzy sets [12], [3] in Mizar [7] started in [11] and partially described in [8]. This submission can be treated also as a part of a formal comparison of fuzzy and rough approaches to incomplete or uncertain information within the Mizar Mathematical Library [9].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2020-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Summary We continue in the Mizar system [2] the formalization of fuzzy implications according to the book of Baczyński and Jayaram “Fuzzy Implications” [1]. In this article we define fuzzy negations and show their connections with previously defined fuzzy implications [4] and [5] and triangular norms and conorms [6]. This can be seen as a step towards building a formal framework of fuzzy connectives [10]. We introduce formally Sugeno negation, boundary negations and show how these operators are pointwise ordered. This work is a continuation of the development of fuzzy sets [12], [3] in Mizar [7] started in [11] and partially described in [8]. This submission can be treated also as a part of a formal comparison of fuzzy and rough approaches to incomplete or uncertain information within the Mizar Mathematical Library [9].
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.