Almost lossless compression of noisy images

IF 0.8 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
B. Jähne
{"title":"Almost lossless compression of noisy images","authors":"B. Jähne","doi":"10.1515/teme-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract An almost lossless compression method for images is introduced adapted to the temporal noise of image sensors. In a first step, a non-linear gray value transform is applied to generate an image with a gray value independent temporal noise and less bits than the original image. The chosen value for the standard deviation of the temporal noise in the transformed image determines how accurately mean values and the standard deviation of temporal noise can be computed and to which extent the image can be compressed further by a lossless compression in a second step. Just a measurement of the noise characteristics according to the open and international EMVA standard 1288, a non-linear gray value transform for noise equalization, and an open source lossless compression algorithm are required to use this new compression method.","PeriodicalId":56086,"journal":{"name":"Tm-Technisches Messen","volume":"21 1","pages":"454 - 463"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tm-Technisches Messen","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/teme-2023-0028","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract An almost lossless compression method for images is introduced adapted to the temporal noise of image sensors. In a first step, a non-linear gray value transform is applied to generate an image with a gray value independent temporal noise and less bits than the original image. The chosen value for the standard deviation of the temporal noise in the transformed image determines how accurately mean values and the standard deviation of temporal noise can be computed and to which extent the image can be compressed further by a lossless compression in a second step. Just a measurement of the noise characteristics according to the open and international EMVA standard 1288, a non-linear gray value transform for noise equalization, and an open source lossless compression algorithm are required to use this new compression method.
几乎无损压缩噪声图像
摘要针对图像传感器的时间噪声,提出了一种几乎无损的图像压缩方法。在第一步中,应用非线性灰度值变换生成具有与灰度值无关的时间噪声且比原始图像少的图像。所选择的变换图像中时间噪声的标准偏差值决定了计算时间噪声的平均值和标准偏差的准确度,以及在第二步中通过无损压缩进一步压缩图像的程度。使用这种新的压缩方法,只需要根据开放的国际EMVA标准1288测量噪声特性,使用非线性灰度值变换进行噪声均衡,并使用开源的无损压缩算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tm-Technisches Messen
Tm-Technisches Messen 工程技术-仪器仪表
CiteScore
1.70
自引率
20.00%
发文量
105
审稿时长
6-12 weeks
期刊介绍: The journal promotes dialogue between the developers of application-oriented sensors, measurement systems, and measurement methods and the manufacturers and measurement technologists who use them. Topics The manufacture and characteristics of new sensors for measurement technology in the industrial sector New measurement methods Hardware and software based processing and analysis of measurement signals to obtain measurement values The outcomes of employing new measurement systems and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信