Cholesterol Metabolism: As a Promising Target Candidate for Tuberculosis Treatment by Nanomedicine

P. Tanwar, Shivangi, L. Meena
{"title":"Cholesterol Metabolism: As a Promising Target Candidate for Tuberculosis Treatment by Nanomedicine","authors":"P. Tanwar, Shivangi, L. Meena","doi":"10.4172/2324-8777.1000273","DOIUrl":null,"url":null,"abstract":"We are facing a tremendous need to develop anti-tuberculosis (TB) drugs due to extreme rise in incidence and mortal cases of this disease. Mycobacterium tuberculosis (M. tuberculosis), the causative agent behind this malady have attained the drug-resistant characteristic by adding mutation at its genetic level and modifying their metabolic pathways. An important metabolic pathway employed in the bacterium is cholesterol metabolic pathway. Cholesterol is needed by the bacterium for attachment, entry, as a major nutrient source, persistence, and infection in the host. Manifold roles of cholesterol in M. tuberculosis making it an important mark to target the survival and virulence of the bacterium. Genetic regulation of cholesterol metabolism is a complex phenomenon. This review emphasizes the close and quick view towards cholesterol metabolism in M. tuberculosis and nanotechnology strategies to target this pathway. Targeting this pathway with specific biomarker designed nanoparticles loaded with anti-cholesterol drugs (Azasteroid, steroid, econazole, etc.) might be a better way of treatment. Antituberculosis drugs that could target their specific enzymes could lead to hindrance in uptake and degradation of this lipid and thus lead to nutrient depletion and accumulation of toxic metabolites which may ultimately lead to bacterial death.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.1000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We are facing a tremendous need to develop anti-tuberculosis (TB) drugs due to extreme rise in incidence and mortal cases of this disease. Mycobacterium tuberculosis (M. tuberculosis), the causative agent behind this malady have attained the drug-resistant characteristic by adding mutation at its genetic level and modifying their metabolic pathways. An important metabolic pathway employed in the bacterium is cholesterol metabolic pathway. Cholesterol is needed by the bacterium for attachment, entry, as a major nutrient source, persistence, and infection in the host. Manifold roles of cholesterol in M. tuberculosis making it an important mark to target the survival and virulence of the bacterium. Genetic regulation of cholesterol metabolism is a complex phenomenon. This review emphasizes the close and quick view towards cholesterol metabolism in M. tuberculosis and nanotechnology strategies to target this pathway. Targeting this pathway with specific biomarker designed nanoparticles loaded with anti-cholesterol drugs (Azasteroid, steroid, econazole, etc.) might be a better way of treatment. Antituberculosis drugs that could target their specific enzymes could lead to hindrance in uptake and degradation of this lipid and thus lead to nutrient depletion and accumulation of toxic metabolites which may ultimately lead to bacterial death.
胆固醇代谢:纳米药物治疗结核病的一个有希望的靶点
由于这种疾病的发病率和死亡病例急剧上升,我们正面临着开发抗结核药物的巨大需求。结核病的病原体结核分枝杆菌(M. tuberculosis)通过在其遗传水平上增加突变并改变其代谢途径而获得耐药特征。细菌的一个重要代谢途径是胆固醇代谢途径。胆固醇是细菌附着、进入、作为主要营养来源、持续存在和感染宿主所必需的。胆固醇在结核分枝杆菌中发挥着多种作用,使其成为检测结核分枝杆菌存活和毒力的重要标志。胆固醇代谢的遗传调控是一个复杂的现象。本文着重介绍了结核分枝杆菌胆固醇代谢的近距离和快速视角以及靶向这一途径的纳米技术策略。用特定的生物标志物设计的纳米颗粒装载抗胆固醇药物(Azasteroid,类固醇,econazole等)靶向这一途径可能是一种更好的治疗方法。针对其特定酶的抗结核药物可能会导致这种脂质的吸收和降解受阻,从而导致营养物质的消耗和有毒代谢物的积累,最终可能导致细菌死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信