C. Baer, Gordon Notzon, C. Dahl, C. Schulz, B. Will, I. Rolfes, T. Musch
{"title":"A millimeter-wave based measuring method for the differentiation of atherosclerotic plaques","authors":"C. Baer, Gordon Notzon, C. Dahl, C. Schulz, B. Will, I. Rolfes, T. Musch","doi":"10.1109/IMWS-BIO.2013.6756167","DOIUrl":null,"url":null,"abstract":"In this contribution, a novel measuring method for the differentiation of intra vascular plaque types is presented. The proposed method operates contact free because of the mm-wave based approach. Fundamentals concerning material properties of blood and plaque, and electromagnetic barrier reflections are discussed. Furthermore, a test setup consisting of a miniaturized sensor setup is introduced that clarifies the measuring concept. Additionally, results of 3D electromagnetic field simulations as well as first measurements ex situ performed on non-human genetic materials are shown and discussed in detail.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"21 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this contribution, a novel measuring method for the differentiation of intra vascular plaque types is presented. The proposed method operates contact free because of the mm-wave based approach. Fundamentals concerning material properties of blood and plaque, and electromagnetic barrier reflections are discussed. Furthermore, a test setup consisting of a miniaturized sensor setup is introduced that clarifies the measuring concept. Additionally, results of 3D electromagnetic field simulations as well as first measurements ex situ performed on non-human genetic materials are shown and discussed in detail.