Multi-Feature Physical Layer Authentication for URLLC based on Linear Supervised Learning

A. Weinand, C. Lipps, Michael Karrenbauer, H. Schotten
{"title":"Multi-Feature Physical Layer Authentication for URLLC based on Linear Supervised Learning","authors":"A. Weinand, C. Lipps, Michael Karrenbauer, H. Schotten","doi":"10.1109/EuCNC/6GSummit58263.2023.10188303","DOIUrl":null,"url":null,"abstract":"Physical Layer Authentication (PLA) can be a lightweight alternative to conventional security schemes such as certificates or Message Authentication Codes (MACs) for secure message transmission within Ultra Reliable Low Latency Communication (URLLC) scenarios. Single features such as Received Signal Strength Indicator (RSSI) are however not providing sufficient authentication accuracy. Therefore, multi-feature techniques for PLA are introduced within this work and evaluated using a Universal Software Radio Peripheral (USRP) based testbed in a mobile URLLC campus network scenario. Linear supervised classification is proposed for PLA and evaluated under different attacker scenarios. The results show promising authentication performances in most of the evaluated senarions and can be increased by the application of multi-feature authentication.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"306 1","pages":"30-35"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physical Layer Authentication (PLA) can be a lightweight alternative to conventional security schemes such as certificates or Message Authentication Codes (MACs) for secure message transmission within Ultra Reliable Low Latency Communication (URLLC) scenarios. Single features such as Received Signal Strength Indicator (RSSI) are however not providing sufficient authentication accuracy. Therefore, multi-feature techniques for PLA are introduced within this work and evaluated using a Universal Software Radio Peripheral (USRP) based testbed in a mobile URLLC campus network scenario. Linear supervised classification is proposed for PLA and evaluated under different attacker scenarios. The results show promising authentication performances in most of the evaluated senarions and can be increased by the application of multi-feature authentication.
基于线性监督学习的URLLC多特征物理层认证
物理层认证(PLA)可以是传统安全方案(如证书或消息认证码(mac))的轻量级替代方案,用于在超可靠低延迟通信(URLLC)场景中安全消息传输。然而,接收信号强度指示器(RSSI)等单一功能不能提供足够的身份验证准确性。因此,在本工作中引入了PLA的多特征技术,并在移动URLLC校园网场景中使用基于通用软件无线电外设(USRP)的测试平台进行了评估。提出了基于聚乳酸的线性监督分类方法,并在不同攻击场景下进行了评估。结果表明,在大多数评估场景中,认证性能都很好,并且可以通过应用多特征认证来提高认证性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
385
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信