Using the Eye of the Storm to Predict the Wave of COVID-19 UI Claims

Daniel Aaronson, Scott A. Brave, R. Butters, Daniel W. Sacks, Boyoung Seo
{"title":"Using the Eye of the Storm to Predict the Wave of COVID-19 UI Claims","authors":"Daniel Aaronson, Scott A. Brave, R. Butters, Daniel W. Sacks, Boyoung Seo","doi":"10.2139/ssrn.3561298","DOIUrl":null,"url":null,"abstract":"We leverage an event-study research design focused on the seven costliest hurricanes to hit the US mainland since 2004 to identify the elasticity of unemployment insurance filings with respect to search intensity. Applying our elasticity estimate to the state-level Google Trends indexes for the topic “unemployment,” we show that out-of-sample forecasts made ahead of the official data releases for March 21 and 28 predicted to a large degree the extent of the Covid-19 related surge in the demand for unemployment insurance. In addition, we provide a robust assessment of the uncertainty surrounding these estimates and demonstrate their use within a broader forecasting framework for US economic activity.","PeriodicalId":13563,"journal":{"name":"Insurance & Financing in Health Economics eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance & Financing in Health Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3561298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We leverage an event-study research design focused on the seven costliest hurricanes to hit the US mainland since 2004 to identify the elasticity of unemployment insurance filings with respect to search intensity. Applying our elasticity estimate to the state-level Google Trends indexes for the topic “unemployment,” we show that out-of-sample forecasts made ahead of the official data releases for March 21 and 28 predicted to a large degree the extent of the Covid-19 related surge in the demand for unemployment insurance. In addition, we provide a robust assessment of the uncertainty surrounding these estimates and demonstrate their use within a broader forecasting framework for US economic activity.
利用风暴眼预测COVID-19 UI索赔浪潮
我们利用事件研究设计,重点关注自2004年以来袭击美国大陆的七个最昂贵的飓风,以确定失业保险申请在搜索强度方面的弹性。将我们的弹性估计应用于“失业”主题的国家级谷歌趋势指数,我们发现,在3月21日和28日官方数据发布之前做出的样本外预测在很大程度上预测了与Covid-19相关的失业保险需求激增的程度。此外,我们对这些估计的不确定性进行了强有力的评估,并展示了它们在美国经济活动更广泛的预测框架中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信