Randomized Rounding for the Largest Simplex Problem

Aleksandar Nikolov
{"title":"Randomized Rounding for the Largest Simplex Problem","authors":"Aleksandar Nikolov","doi":"10.1145/2746539.2746628","DOIUrl":null,"url":null,"abstract":"The maximum volume j-simplex problem asks to compute the j-dimensional simplex of maximum volume inside the convex hull of a given set of n points in Qd. We give a deterministic approximation algorithm for this problem which achieves an approximation ratio of ej/2 + o(j). The problem is known to be NP-hard to approximate within a factor of cj for some constant c > 1. Our algorithm also gives a factor ej + o(j) approximation for the problem of finding the principal j x j submatrix of a rank d positive semidefinite matrix with the largest determinant. We achieve our approximation by rounding solutions to a generalization of the D-optimal design problem, or, equivalently, the dual of an appropriate smallest enclosing ellipsoid problem. Our arguments give a short and simple proof of a restricted invertibility principle for determinants.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

The maximum volume j-simplex problem asks to compute the j-dimensional simplex of maximum volume inside the convex hull of a given set of n points in Qd. We give a deterministic approximation algorithm for this problem which achieves an approximation ratio of ej/2 + o(j). The problem is known to be NP-hard to approximate within a factor of cj for some constant c > 1. Our algorithm also gives a factor ej + o(j) approximation for the problem of finding the principal j x j submatrix of a rank d positive semidefinite matrix with the largest determinant. We achieve our approximation by rounding solutions to a generalization of the D-optimal design problem, or, equivalently, the dual of an appropriate smallest enclosing ellipsoid problem. Our arguments give a short and simple proof of a restricted invertibility principle for determinants.
最大单纯形问题的随机舍入
最大体积j-单纯形问题要求计算Qd中给定n个点的凸包内最大体积的j维单纯形。给出了一种确定性逼近算法,逼近比为ej/2 + o(j)。对于某个常数c > 1,这个问题已知是np困难的,难以在系数cj内近似。我们的算法也给出了一个因子ej + o(j)近似的问题,以找到一个最大行列式的第d阶正半定矩阵的主jxj子矩阵。我们通过四舍五入的方法来逼近d -最优设计问题的一般化解,或者,等价地,一个适当的最小封闭椭球问题的对偶。我们的论证给出了行列式的有限可逆性原理的一个简短的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信