Image Regularization with Morphological Gradient Priors Using Optimal Structuring Elements for Each Pixel

Shoya Oohara, Hirotaka Oka, M. Muneyasu, Soh Yoshida, M. Nakashizuka
{"title":"Image Regularization with Morphological Gradient Priors Using Optimal Structuring Elements for Each Pixel","authors":"Shoya Oohara, Hirotaka Oka, M. Muneyasu, Soh Yoshida, M. Nakashizuka","doi":"10.1109/ISPACS48206.2019.8986309","DOIUrl":null,"url":null,"abstract":"As an image prior for image restoration, the use of the sum of the morphological gradient for an image has been proposed. In this paper, we propose a method of optimizing the structuring element (SE) for each pixel, in particular, by greatly reducing the computational burden for optimization by adopting a new evaluation method for the SE in simulated annealing. By optimizing the SE for each pixel, edges of the image can be faithfully evaluated, and the improvement of restoration accuracy can be expected. An experimental result shows the effectiveness of the proposed method.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"6 3 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As an image prior for image restoration, the use of the sum of the morphological gradient for an image has been proposed. In this paper, we propose a method of optimizing the structuring element (SE) for each pixel, in particular, by greatly reducing the computational burden for optimization by adopting a new evaluation method for the SE in simulated annealing. By optimizing the SE for each pixel, edges of the image can be faithfully evaluated, and the improvement of restoration accuracy can be expected. An experimental result shows the effectiveness of the proposed method.
基于形态学梯度先验的图像正则化方法
作为图像恢复的先验算法,本文提出了形态学梯度和的使用方法。在本文中,我们提出了一种优化每个像素的结构元素(SE)的方法,特别是通过采用一种新的模拟退火中SE的评估方法,大大减少了优化的计算负担。通过对每个像素的SE进行优化,可以忠实地评估图像的边缘,从而提高恢复精度。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信