Geometric uncertainties in finite element analysis

S. Chinchalkar , D.L. Taylor
{"title":"Geometric uncertainties in finite element analysis","authors":"S. Chinchalkar ,&nbsp;D.L. Taylor","doi":"10.1016/0956-0521(94)90047-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper demonstrates the use of automatic differentiation in solving finite element problems with random geometry. In the area of biomechanics, the shape and size of the domain is often known only approximately. Stochastic finite element analysis can be used to compute the variability in the structural response as a result of variability in the shape of the structural domain. Automatic differentiation can be used to compute the shape sensitivites accurately and effortlessly. Unlike randomness in material properties, the response variability can be the same as or greater than the variability in the input. When both the Young's modulus and geometry are random, it is likely that randomness in geometry will dominate randomness in Young's modulus.</p></div>","PeriodicalId":100325,"journal":{"name":"Computing Systems in Engineering","volume":"5 2","pages":"Pages 159-170"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0956-0521(94)90047-7","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Systems in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0956052194900477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper demonstrates the use of automatic differentiation in solving finite element problems with random geometry. In the area of biomechanics, the shape and size of the domain is often known only approximately. Stochastic finite element analysis can be used to compute the variability in the structural response as a result of variability in the shape of the structural domain. Automatic differentiation can be used to compute the shape sensitivites accurately and effortlessly. Unlike randomness in material properties, the response variability can be the same as or greater than the variability in the input. When both the Young's modulus and geometry are random, it is likely that randomness in geometry will dominate randomness in Young's modulus.

有限元分析中的几何不确定性
本文证明了自动微分法在求解随机几何有限元问题中的应用。在生物力学领域,结构域的形状和大小通常只是大致已知的。随机有限元分析可以用来计算结构响应的变异性,这是结构域形状变异性的结果。自动微分法可以准确、轻松地计算形状灵敏度。与材料特性的随机性不同,响应可变性可以等于或大于输入的可变性。当杨氏模量和几何模量都是随机的时候,很可能几何模量的随机性会压倒杨氏模量的随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信