Selective Laser Melting of Stainless Steel 316L for Mechanical Property-Gradation

Yash Parikh, Mathew Kuttolamadom
{"title":"Selective Laser Melting of Stainless Steel 316L for Mechanical Property-Gradation","authors":"Yash Parikh, Mathew Kuttolamadom","doi":"10.1115/msec2021-64108","DOIUrl":null,"url":null,"abstract":"\n With an end goal of creating single-alloy functionally-graded additively manufactured (FGAM) parts, this paper investigates the manufacture and properties of stainless steel 316L samples via a pulsed selective laser melting (SLM) process. The focus is on elucidating the underlying causes of property variations (within a functionally-acceptable range) through material characterization and testing. Five samples (made via different volumetric energy density-based process parameter sets) were down-selected from preliminary experimental results and analyzed for their microstructure, mechanical and physical properties (hardness, density/porosity, Young’s modulus). It was observed that property variations resulted from combinations of porosity types/amounts, martensitic phase fractions, and grain sizes. Based on these, various functionally-graded specimens of different sizes were built as per ASTM standards, each having intended property changes along its gauge volumes. The presented findings establish that a methodical control of microstructure and mechanical properties could be obtained in a repeatable and reproducible manner by changing the process parameters. This work lays the foundation for understanding and tuning the global mechanical performance of FGAM bulk structures as well as the role of interfacial zones.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-64108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With an end goal of creating single-alloy functionally-graded additively manufactured (FGAM) parts, this paper investigates the manufacture and properties of stainless steel 316L samples via a pulsed selective laser melting (SLM) process. The focus is on elucidating the underlying causes of property variations (within a functionally-acceptable range) through material characterization and testing. Five samples (made via different volumetric energy density-based process parameter sets) were down-selected from preliminary experimental results and analyzed for their microstructure, mechanical and physical properties (hardness, density/porosity, Young’s modulus). It was observed that property variations resulted from combinations of porosity types/amounts, martensitic phase fractions, and grain sizes. Based on these, various functionally-graded specimens of different sizes were built as per ASTM standards, each having intended property changes along its gauge volumes. The presented findings establish that a methodical control of microstructure and mechanical properties could be obtained in a repeatable and reproducible manner by changing the process parameters. This work lays the foundation for understanding and tuning the global mechanical performance of FGAM bulk structures as well as the role of interfacial zones.
316L不锈钢机械性能分级的选择性激光熔化
以制造单合金功能梯度增材制造(FGAM)零件为最终目标,本文通过脉冲选择性激光熔化(SLM)工艺研究了不锈钢316L样品的制造和性能。重点是通过材料表征和测试阐明性能变化(在功能可接受范围内)的潜在原因。从初步实验结果中选择了5个样品(通过不同的基于体积能量密度的工艺参数集制作),并分析了它们的微观结构、力学和物理性能(硬度、密度/孔隙率、杨氏模量)。观察到孔隙类型/数量、马氏体相分数和晶粒尺寸的组合导致了材料性能的变化。在此基础上,根据ASTM标准构建了不同尺寸的各种功能分级试样,每个试样都具有沿其测量体积的预期性能变化。所提出的研究结果表明,通过改变工艺参数,可以以可重复和可再现的方式获得微观结构和力学性能的系统控制。这项工作为理解和调整FGAM体结构的整体力学性能以及界面区的作用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信