Learning to Minify Photometric Stereo

Junxuan Li, A. Robles-Kelly, Shaodi You, Y. Matsushita
{"title":"Learning to Minify Photometric Stereo","authors":"Junxuan Li, A. Robles-Kelly, Shaodi You, Y. Matsushita","doi":"10.1109/CVPR.2019.00775","DOIUrl":null,"url":null,"abstract":"Photometric stereo estimates the surface normal given a set of images acquired under different illumination conditions. To deal with diverse factors involved in the image formation process, recent photometric stereo methods demand a large number of images as input. We propose a method that can dramatically decrease the demands on the number of images by learning the most informative ones under different illumination conditions. To this end, we use a deep learning framework to automatically learn the critical illumination conditions required at input. Furthermore, we present an occlusion layer that can synthesize cast shadows, which effectively improves the estimation accuracy. We assess our method on challenging real-world conditions, where we outperform techniques elsewhere in the literature with a significantly reduced number of light conditions.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"416 1","pages":"7560-7568"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Photometric stereo estimates the surface normal given a set of images acquired under different illumination conditions. To deal with diverse factors involved in the image formation process, recent photometric stereo methods demand a large number of images as input. We propose a method that can dramatically decrease the demands on the number of images by learning the most informative ones under different illumination conditions. To this end, we use a deep learning framework to automatically learn the critical illumination conditions required at input. Furthermore, we present an occlusion layer that can synthesize cast shadows, which effectively improves the estimation accuracy. We assess our method on challenging real-world conditions, where we outperform techniques elsewhere in the literature with a significantly reduced number of light conditions.
学习缩小光度立体
在不同光照条件下获得的一组图像,光度立体估计表面法线。为了处理图像形成过程中涉及的各种因素,最近的光度立体方法需要大量的图像作为输入。我们提出了一种方法,通过学习不同光照条件下信息量最大的图像,可以显著降低对图像数量的需求。为此,我们使用深度学习框架来自动学习输入时所需的关键照明条件。此外,我们还提出了一种可以合成阴影的遮挡层,有效地提高了估计精度。我们在具有挑战性的现实世界条件下评估了我们的方法,在这些条件下,我们在显著减少光照条件的情况下优于文献中的其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信