A class of weighted Hill estimators

IF 0.9 Q3 MATHEMATICS, APPLIED
Frederico Caeiro, Ayana Mateus, Louiza Soltane
{"title":"A class of weighted Hill estimators","authors":"Frederico Caeiro,&nbsp;Ayana Mateus,&nbsp;Louiza Soltane","doi":"10.1002/cmm4.1167","DOIUrl":null,"url":null,"abstract":"<p>In Statistics of Extremes, the estimation of the extreme value index is an essential requirement for further tail inference. In this work, we deal with the estimation of a strictly positive extreme value index from a model with a Pareto-type right tail. Under this framework, we propose a new class of weighted Hill estimators, parameterized with a tuning parameter <i>a</i>. We derive their non-degenerate asymptotic behavior and analyze the influence of the tuning parameter in such result. Their finite sample performance is analyzed through a Monte Carlo simulation study. A comparison with other important extreme value index estimators from the literature is also provided.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1167","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In Statistics of Extremes, the estimation of the extreme value index is an essential requirement for further tail inference. In this work, we deal with the estimation of a strictly positive extreme value index from a model with a Pareto-type right tail. Under this framework, we propose a new class of weighted Hill estimators, parameterized with a tuning parameter a. We derive their non-degenerate asymptotic behavior and analyze the influence of the tuning parameter in such result. Their finite sample performance is analyzed through a Monte Carlo simulation study. A comparison with other important extreme value index estimators from the literature is also provided.

一类加权Hill估计量
在极值统计中,极值指标的估计是进一步进行尾部推理的必要条件。在这项工作中,我们处理了一个具有帕累托型右尾的模型的严格正极值指标的估计。在此框架下,我们提出了一类新的加权Hill估计,参数化参数为a,我们得到了它们的非退化渐近行为,并分析了调谐参数对结果的影响。通过蒙特卡罗仿真分析了它们的有限样本性能。并与文献中其他重要的极值指标估计量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信