Improving the efficiency of neural networks with virtual training data

János Hollósi, Rudolf Krecht, Norbert Markó, Á. Ballagi
{"title":"Improving the efficiency of neural networks with virtual training data","authors":"János Hollósi, Rudolf Krecht, Norbert Markó, Á. Ballagi","doi":"10.33927/hjic-2020-02","DOIUrl":null,"url":null,"abstract":"At Szechenyi Istvan University, an autonomous racing car for the Shell Eco-marathon is being developed. One of the main tasks is to create a neural network which segments the road surface, protective barriers and other components of the racing track. The difficulty with this task is that no suitable dataset for special objects, e.g. protective barriers, exists. Only a dataset limited in terms of its size is available, therefore, computer-generated virtual images from a virtual city environment are used to expand this dataset. In this work, the effect of computer-generated virtual images on the efficiency of different neural network architectures is examined. In the training process, real images and computer-generated virtual images are mixed in several ways. Subsequently, three different neural network architectures for road surfaces and the detection of protective barriers are trained. Past experiences determine how to mix datasets and how they can improve efficiency.","PeriodicalId":13010,"journal":{"name":"Hungarian Journal of Industrial Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hungarian Journal of Industrial Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33927/hjic-2020-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At Szechenyi Istvan University, an autonomous racing car for the Shell Eco-marathon is being developed. One of the main tasks is to create a neural network which segments the road surface, protective barriers and other components of the racing track. The difficulty with this task is that no suitable dataset for special objects, e.g. protective barriers, exists. Only a dataset limited in terms of its size is available, therefore, computer-generated virtual images from a virtual city environment are used to expand this dataset. In this work, the effect of computer-generated virtual images on the efficiency of different neural network architectures is examined. In the training process, real images and computer-generated virtual images are mixed in several ways. Subsequently, three different neural network architectures for road surfaces and the detection of protective barriers are trained. Past experiences determine how to mix datasets and how they can improve efficiency.
利用虚拟训练数据提高神经网络的效率
在Szechenyi Istvan大学,一辆用于壳牌生态马拉松的自动驾驶赛车正在开发中。其中一项主要任务是创建一个神经网络,将路面、防护屏障和赛道的其他组成部分分割开来。这项任务的困难在于没有适合特殊对象的数据集,例如保护屏障。只有一个受大小限制的数据集可用,因此,使用来自虚拟城市环境的计算机生成的虚拟图像来扩展该数据集。在这项工作中,研究了计算机生成的虚拟图像对不同神经网络结构效率的影响。在训练过程中,真实图像和计算机生成的虚拟图像以多种方式混合在一起。随后,训练了三种不同的用于路面和防护障碍物检测的神经网络结构。过去的经验决定了如何混合数据集以及如何提高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信