On the optimality of clustering properties of space filling curves

Pan Xu, S. Tirthapura
{"title":"On the optimality of clustering properties of space filling curves","authors":"Pan Xu, S. Tirthapura","doi":"10.1145/2213556.2213587","DOIUrl":null,"url":null,"abstract":"Space filling curves have for long been used in the design of data structures for multidimensional data. A fundamental quality metric of a space filling curve is its \"clustering number\" with respect to a class of queries, which is the average number of contiguous segments on the space filling curve that a query region can be partitioned into. We present a characterization of the clustering number of a general class of space filling curves, as well as the first non-trivial lower bounds on the clustering number for any space filling curve. Our results also answer an open problem that was posed by Jagadish in 1997.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"7 1","pages":"215-224"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213556.2213587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Space filling curves have for long been used in the design of data structures for multidimensional data. A fundamental quality metric of a space filling curve is its "clustering number" with respect to a class of queries, which is the average number of contiguous segments on the space filling curve that a query region can be partitioned into. We present a characterization of the clustering number of a general class of space filling curves, as well as the first non-trivial lower bounds on the clustering number for any space filling curve. Our results also answer an open problem that was posed by Jagadish in 1997.
空间填充曲线聚类特性的最优性研究
空间填充曲线一直被用于多维数据的数据结构设计。空间填充曲线的基本质量度量是它相对于一类查询的“聚类数”,这是查询区域可以划分的空间填充曲线上连续段的平均数量。我们给出了一类一般空间填充曲线的聚类数的刻画,以及任何空间填充曲线的聚类数的第一个非平凡下界。我们的结果也回答了Jagadish在1997年提出的一个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信