Cracking of Methyl Ester from Used-Cooking Oil Using Ni-Impregnated Active Charcoal Catalyst

N. Nazarudin, U. Ulyarti, O. Alfernando, Yogie Yogendra Hans
{"title":"Cracking of Methyl Ester from Used-Cooking Oil Using Ni-Impregnated Active Charcoal Catalyst","authors":"N. Nazarudin, U. Ulyarti, O. Alfernando, Yogie Yogendra Hans","doi":"10.14710/reaktor.22.1.21-27","DOIUrl":null,"url":null,"abstract":"Current petroleum energy sources have been starting to diminish along with the increasing a demand in industries and transportations. In the next few years Indonesia is predicted to experience a fuel crisis. One way to solve this problem is to find the alternative energy sources from renewable raw materials. This study was conducted to obtain alternative renewable energy sources through catalytic cracking of used cooking oil-derived methyl ester into biofuel using active charcoal catalyst.  The active charcoal was made out of solid waste (shells) of the oil palm industry. Nickel solutions of varying concentrations (1%, 2%, 3%) ware impregnated into active charcoal to produce the Ni- charcoal catalyst. This catalyst was then used for catalytic cracking of methyl esters with variations in the reaction temperature of 400oC, 450oC and 500oC. The Methyl ester was produced from filtered used-cooking oil by transesterification method. SEM-EDX analysis showed that Nickel metal was successfully embedded into active charcoal where the highest concentration of Nickel (18.4%) was found at a impregnation treatment using 2% of Nickel solution. From the SEM image, it can also be seen that the catalyst produced unique pores. The gravimetric analysis of the catalytic cracking product showed that the highest fraction of oil liquid resulting from catalytic cracking at 400oC using Ni-charcoal catalyst impregnated with 3% Nickel solution.","PeriodicalId":20874,"journal":{"name":"Reaktor","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaktor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/reaktor.22.1.21-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current petroleum energy sources have been starting to diminish along with the increasing a demand in industries and transportations. In the next few years Indonesia is predicted to experience a fuel crisis. One way to solve this problem is to find the alternative energy sources from renewable raw materials. This study was conducted to obtain alternative renewable energy sources through catalytic cracking of used cooking oil-derived methyl ester into biofuel using active charcoal catalyst.  The active charcoal was made out of solid waste (shells) of the oil palm industry. Nickel solutions of varying concentrations (1%, 2%, 3%) ware impregnated into active charcoal to produce the Ni- charcoal catalyst. This catalyst was then used for catalytic cracking of methyl esters with variations in the reaction temperature of 400oC, 450oC and 500oC. The Methyl ester was produced from filtered used-cooking oil by transesterification method. SEM-EDX analysis showed that Nickel metal was successfully embedded into active charcoal where the highest concentration of Nickel (18.4%) was found at a impregnation treatment using 2% of Nickel solution. From the SEM image, it can also be seen that the catalyst produced unique pores. The gravimetric analysis of the catalytic cracking product showed that the highest fraction of oil liquid resulting from catalytic cracking at 400oC using Ni-charcoal catalyst impregnated with 3% Nickel solution.
ni -浸渍活性炭催化裂化废油甲酯
随着工业和运输需求的增加,目前的石油能源已经开始减少。预计未来几年印尼将经历一场燃料危机。解决这一问题的方法之一是从可再生原料中寻找替代能源。本研究采用活性炭催化裂化废食用油衍生甲酯制备生物燃料,以获得可替代的可再生能源。活性炭是由油棕工业的固体废物(贝壳)制成的。将不同浓度的镍溶液(1%、2%、3%)浸渍到活性炭中以生产镍炭催化剂。在反应温度为400℃、450℃和500℃的条件下,将该催化剂用于甲酯的催化裂解。以过滤后的食用油为原料,采用酯交换法制备甲酯。SEM-EDX分析表明,镍金属被成功嵌入到活性炭中,其中2%镍溶液浸渍处理的镍含量最高,达到18.4%。从SEM图像也可以看出,催化剂产生了独特的孔隙。对催化裂化产物的重量分析表明,采用3%镍溶液浸渍的镍炭催化剂,在400℃时催化裂化产生的油液分数最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
2 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信