AN ABSTRACT ALGEBRAIC LOGIC STUDY OF DA COSTA’S LOGIC ${\mathscr {C}}_1$ AND SOME OF ITS PARACONSISTENT EXTENSIONS

Hugo Albuquerque, Carlos Caleiro
{"title":"AN ABSTRACT ALGEBRAIC LOGIC STUDY OF DA COSTA’S LOGIC \n${\\mathscr {C}}_1$\n AND SOME OF ITS PARACONSISTENT EXTENSIONS","authors":"Hugo Albuquerque, Carlos Caleiro","doi":"10.1017/bsl.2022.36","DOIUrl":null,"url":null,"abstract":"Abstract Two famous negative results about da Costa’s paraconsistent logic \n${\\mathscr {C}}_1$\n (the failure of the Lindenbaum–Tarski process [44] and its non-algebraizability [39]) have placed \n${\\mathscr {C}}_1$\n seemingly as an exception to the scope of Abstract Algebraic Logic (AAL). In this paper we undertake a thorough AAL study of da Costa’s logic \n${\\mathscr {C}}_1$\n . On the one hand, we strengthen the negative results about \n${\\mathscr {C}}_1$\n by proving that it does not admit any algebraic semantics whatsoever in the sense of Blok and Pigozzi (a weaker notion than algebraizability also introduced in the monograph [6]). On the other hand, \n${\\mathscr {C}}_1$\n is a protoalgebraic logic satisfying a Deduction-Detachment Theorem (DDT). We then extend our AAL study to some paraconsistent axiomatic extensions of \n${\\mathscr {C}}_1$\n covered in the literature. We prove that for extensions \n${\\mathcal {S}}$\n such as \n${\\mathcal {C}ilo}$\n [26], every algebra in \n${\\mathsf {Alg}}^*({\\mathcal {S}})$\n contains a Boolean subalgebra, and for extensions \n${\\mathcal {S}}$\n such as , , or [16, 53], every subdirectly irreducible algebra in \n${\\mathsf {Alg}}^*({\\mathcal {S}})$\n has cardinality at most 3. We also characterize the quasivariety \n${\\mathsf {Alg}}^*({\\mathcal {S}})$\n and the intrinsic variety \n$\\mathbb {V}({\\mathcal {S}})$\n , with , , and .","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":"12 1","pages":"477 - 528"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2022.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Two famous negative results about da Costa’s paraconsistent logic ${\mathscr {C}}_1$ (the failure of the Lindenbaum–Tarski process [44] and its non-algebraizability [39]) have placed ${\mathscr {C}}_1$ seemingly as an exception to the scope of Abstract Algebraic Logic (AAL). In this paper we undertake a thorough AAL study of da Costa’s logic ${\mathscr {C}}_1$ . On the one hand, we strengthen the negative results about ${\mathscr {C}}_1$ by proving that it does not admit any algebraic semantics whatsoever in the sense of Blok and Pigozzi (a weaker notion than algebraizability also introduced in the monograph [6]). On the other hand, ${\mathscr {C}}_1$ is a protoalgebraic logic satisfying a Deduction-Detachment Theorem (DDT). We then extend our AAL study to some paraconsistent axiomatic extensions of ${\mathscr {C}}_1$ covered in the literature. We prove that for extensions ${\mathcal {S}}$ such as ${\mathcal {C}ilo}$ [26], every algebra in ${\mathsf {Alg}}^*({\mathcal {S}})$ contains a Boolean subalgebra, and for extensions ${\mathcal {S}}$ such as , , or [16, 53], every subdirectly irreducible algebra in ${\mathsf {Alg}}^*({\mathcal {S}})$ has cardinality at most 3. We also characterize the quasivariety ${\mathsf {Alg}}^*({\mathcal {S}})$ and the intrinsic variety $\mathbb {V}({\mathcal {S}})$ , with , , and .
DA COSTA逻辑${\mathscr {C}}_1$及其副相容扩展的抽象代数逻辑研究
关于da Costa的副一致逻辑${\mathscr {C}}_1$的两个著名的否定结果(Lindenbaum-Tarski过程的失败[44]及其不可代数性[39])使${\mathscr {C}}_1$似乎成为抽象代数逻辑(AAL)范围内的一个例外。本文对da Costa的逻辑${\mathscr {C}}_1$进行了深入的AAL研究。一方面,我们通过证明${\mathscr {C}}_1$在Blok和Pigozzi意义上不承认任何代数语义来加强关于${\mathscr {C}}_1$的否定结果(在专著[6]中也引入了一个比可代数性弱的概念)。另一方面,${\mathscr {C}}_1$是满足演绎分离定理(DDT)的原代数逻辑。然后,我们将我们的AAL研究扩展到文献中涵盖的${\mathscr {C}}_1$的一些副一致公理扩展。我们证明了对于扩展${\mathcal {S}}$,如${\mathcal {C}ilo}$ [26], ${\mathsf {Alg}}^*({\mathcal {S}})$中的每一个代数都包含一个布尔子代数,对于扩展${\mathcal {S}}$,如,或[16,53],${\mathsf {Alg}}^*({\mathcal {S}})$中的每一个子直接不可约代数的基数不超过3。我们还描述了准变量${\mathsf {Alg}}^*({\mathcal {S}})$和本征变量$\mathbb {V}({\mathcal {S}})$,并使用、和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信