A CMOS Cellular Interface Array for Digital Physiology Featuring High-Density Multi-Modal Pixels and Reconfigurable Sampling Rate

Adam Wang, Yuguo Sheng, Wanlu Li, Doohwan Jung, Gregory V. Junek, Jongseok Park, Dongwon Lee, Mian Wang, S. Maharjan, Sagar R. Kumashi, Jin Hao, Y. S. Zhang, K. Eggan, Hua Wang
{"title":"A CMOS Cellular Interface Array for Digital Physiology Featuring High-Density Multi-Modal Pixels and Reconfigurable Sampling Rate","authors":"Adam Wang, Yuguo Sheng, Wanlu Li, Doohwan Jung, Gregory V. Junek, Jongseok Park, Dongwon Lee, Mian Wang, S. Maharjan, Sagar R. Kumashi, Jin Hao, Y. S. Zhang, K. Eggan, Hua Wang","doi":"10.1109/ISSCC42614.2022.9731629","DOIUrl":null,"url":null,"abstract":"With the recent pandemic, the necessity of digital physiology/pathology, a set of high-resolution cellular/tissue-level images uploaded to the cloud for remote analytics and diagnostics, has skyrocketed as in-person lab services are limited by processing throughputs and increased exposure risks to patients/medical professionals [1]–[2]. Presently, cellular physiology diagnoses rely on high-resolution medical imaging and when translated to a cellular/tissue-level, these images, albeit with different biomarkers, may not holistically characterize a pathogen's effect due to the cell's complex multi-physiological responses [3]. In particular, new pathogen/virus variants often exhibit unknown pathological effects on cellular physiological functions. Hence, desired digital physiology cellular platforms should support sensing a wide variety of cells under different conditions, including those with rapid physiological features, e.g., neuron/cardiac cells.","PeriodicalId":6830,"journal":{"name":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"231 1","pages":"202-204"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42614.2022.9731629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the recent pandemic, the necessity of digital physiology/pathology, a set of high-resolution cellular/tissue-level images uploaded to the cloud for remote analytics and diagnostics, has skyrocketed as in-person lab services are limited by processing throughputs and increased exposure risks to patients/medical professionals [1]–[2]. Presently, cellular physiology diagnoses rely on high-resolution medical imaging and when translated to a cellular/tissue-level, these images, albeit with different biomarkers, may not holistically characterize a pathogen's effect due to the cell's complex multi-physiological responses [3]. In particular, new pathogen/virus variants often exhibit unknown pathological effects on cellular physiological functions. Hence, desired digital physiology cellular platforms should support sensing a wide variety of cells under different conditions, including those with rapid physiological features, e.g., neuron/cardiac cells.
一种高密度多模态像素和可重构采样率的数字生理CMOS蜂窝接口阵列
随着最近的大流行,数字生理学/病理学(一组上传到云端用于远程分析和诊断的高分辨率细胞/组织级图像)的必要性急剧上升,因为现场实验室服务受到处理吞吐量和患者/医疗专业人员暴露风险增加的限制。目前,细胞生理学诊断依赖于高分辨率医学成像,当转化为细胞/组织水平时,这些图像尽管具有不同的生物标志物,但由于细胞复杂的多生理反应,可能无法全面表征病原体的影响。特别是,新的病原体/病毒变异常常对细胞生理功能表现出未知的病理作用。因此,期望的数字生理细胞平台应该支持在不同条件下感知各种各样的细胞,包括那些具有快速生理特征的细胞,例如神经元/心脏细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信