Solving the mapping problem with a genetic algorithm on the MasPar-1

T. Kalinowski
{"title":"Solving the mapping problem with a genetic algorithm on the MasPar-1","authors":"T. Kalinowski","doi":"10.1109/MPCS.1994.367057","DOIUrl":null,"url":null,"abstract":"Good mapping algorithms can significantly reduce the total execution time of a program. However, the mapping problem is NP-complete. Consequently, heuristic methods should be used. Massively parallel systems allow the implementation of genetic algorithms running on large populations. In this paper, an algorithm based on a neighbourhood model is presented. The program has been implemented on 4096-processor MasPar-1 multicomputer. Experimental results for three genetic operators are presented and compared. The influence of initialisation strategies and selection techniques is also considered. A new initialization strategy based on grouping of adjacent tasks into approximately equal clusters is proposed.<<ETX>>","PeriodicalId":64175,"journal":{"name":"专用汽车","volume":"44 1","pages":"370-374"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"专用汽车","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/MPCS.1994.367057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Good mapping algorithms can significantly reduce the total execution time of a program. However, the mapping problem is NP-complete. Consequently, heuristic methods should be used. Massively parallel systems allow the implementation of genetic algorithms running on large populations. In this paper, an algorithm based on a neighbourhood model is presented. The program has been implemented on 4096-processor MasPar-1 multicomputer. Experimental results for three genetic operators are presented and compared. The influence of initialisation strategies and selection techniques is also considered. A new initialization strategy based on grouping of adjacent tasks into approximately equal clusters is proposed.<>
用遗传算法求解火星一号的映射问题
好的映射算法可以显著减少程序的总执行时间。然而,映射问题是np完全的。因此,应该使用启发式方法。大规模并行系统允许在大量人口上运行遗传算法的实现。本文提出了一种基于邻域模型的算法。该程序已在4096处理器的MasPar-1多计算机上实现。给出了三种遗传算子的实验结果并进行了比较。还考虑了初始化策略和选择技术的影响。提出了一种基于相邻任务近似相等聚类的初始化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8000
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信