Deep and shallow slice knots in 4-manifolds

M. Klug, Benjamin Matthias Ruppik
{"title":"Deep and shallow slice knots in 4-manifolds","authors":"M. Klug, Benjamin Matthias Ruppik","doi":"10.1090/bproc/89","DOIUrl":null,"url":null,"abstract":"We consider slice disks for knots in the boundary of a smooth compact 4-manifold $X^{4}$. We call a knot $K \\subset \\partial X$ deep slice in $X$ if there is a smooth properly embedded 2-disk in $X$ with boundary $K$, but $K$ is not concordant to the unknot in a collar neighborhood $\\partial X \\times I$ of the boundary. We point out how this concept relates to various well-known conjectures and give some criteria for the nonexistence of such deep slice knots. Then we show, using the Wall self-intersection invariant and a result of Rohlin, that every 4-manifold consisting of just one 0- and a nonzero number of 2-handles always has a deep slice knot in the boundary. We end by considering 4-manifolds where every knot in the boundary bounds an embedded disk in the interior. A generalization of the Murasugi-Tristram inequality is used to show that there does not exist a compact, oriented 4-manifold $V$ with spherical boundary such that every knot $K \\subset S^3 = \\partial V$ is slice in $V$ via a null-homologous disk.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider slice disks for knots in the boundary of a smooth compact 4-manifold $X^{4}$. We call a knot $K \subset \partial X$ deep slice in $X$ if there is a smooth properly embedded 2-disk in $X$ with boundary $K$, but $K$ is not concordant to the unknot in a collar neighborhood $\partial X \times I$ of the boundary. We point out how this concept relates to various well-known conjectures and give some criteria for the nonexistence of such deep slice knots. Then we show, using the Wall self-intersection invariant and a result of Rohlin, that every 4-manifold consisting of just one 0- and a nonzero number of 2-handles always has a deep slice knot in the boundary. We end by considering 4-manifolds where every knot in the boundary bounds an embedded disk in the interior. A generalization of the Murasugi-Tristram inequality is used to show that there does not exist a compact, oriented 4-manifold $V$ with spherical boundary such that every knot $K \subset S^3 = \partial V$ is slice in $V$ via a null-homologous disk.
深和浅片节在4流形
我们考虑光滑紧致4流形$X^{4}$边界上的结点的片盘。如果在$X$中有一个光滑的适当嵌入的2-盘,边界为$K$,我们称$X$中的结为$K \子集\偏X$深切片,但$K$与边界的$\偏X \乘以I$的领邻域解结不一致。我们指出了这个概念是如何与各种众所周知的猜想相联系的,并给出了这种深片结不存在的一些判据。然后,我们利用Wall自交不变量和Rohlin的结果证明,每一个仅由一个0-和非0数量的2-柄组成的4-流形在边界上总是有一个深的切片结。我们最后考虑4流形,其中边界上的每个结都与内部的嵌入盘相结合。推广了murasuki - tristram不等式,证明了不存在一个紧致的、有取向的4流形$V$具有球面边界,使得每一个结点$K \子集S^3 = \偏V$通过一个零同源盘在$V$中被分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信