Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds

IF 1.2 2区 数学 Q1 MATHEMATICS
Asma Hassannezhad, G. Kokarev
{"title":"Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds","authors":"Asma Hassannezhad, G. Kokarev","doi":"10.2422/2036-2145.201409_005","DOIUrl":null,"url":null,"abstract":"We study eigenvalue problems for intrinsic sub-Laplacians on regular sub-Riemannian manifolds. We prove upper bounds for sub-Laplacian eigenvalues λk of conformal sub-Riemannian metrics that are asymptotically sharp as k→+∞. For Sasakian manifolds with a lower Ricci curvature bound, and more generally, for contact metric manifolds conformal to such Sasakian manifolds, we obtain eigenvalue inequalities that can be viewed as versions of the classical results by Korevaar and Buser in Riemannian geometry.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"31 1","pages":"1049-1092"},"PeriodicalIF":1.2000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201409_005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 34

Abstract

We study eigenvalue problems for intrinsic sub-Laplacians on regular sub-Riemannian manifolds. We prove upper bounds for sub-Laplacian eigenvalues λk of conformal sub-Riemannian metrics that are asymptotically sharp as k→+∞. For Sasakian manifolds with a lower Ricci curvature bound, and more generally, for contact metric manifolds conformal to such Sasakian manifolds, we obtain eigenvalue inequalities that can be viewed as versions of the classical results by Korevaar and Buser in Riemannian geometry.
子黎曼流形上的子拉普拉斯特征值界
研究正则子黎曼流形上的内禀子拉普拉斯特征值问题。证明了k→+∞渐近尖锐的共形次黎曼度量的次拉普拉斯特征值λk的上界。对于具有下Ricci曲率界的Sasakian流形,更一般地说,对于与Sasakian流形共形的接触度量流形,我们得到了特征值不等式,这些特征值不等式可以看作是riemanian几何中Korevaar和Buser经典结果的版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信