Harshavardhan Sundar, Weiran Wang, Ming Sun, Chao Wang
{"title":"Raw Waveform Based End-to-end Deep Convolutional Network for Spatial Localization of Multiple Acoustic Sources","authors":"Harshavardhan Sundar, Weiran Wang, Ming Sun, Chao Wang","doi":"10.1109/ICASSP40776.2020.9054090","DOIUrl":null,"url":null,"abstract":"In this paper, we present an end-to-end deep convolutional neural network operating on multi-channel raw audio data to localize multiple simultaneously active acoustic sources in space. Previously reported deep learning based approaches work well in localizing a single source directly from multi-channel raw-audio, but are not easily extendable to localize multiple sources due to the well known permutation problem. We propose a novel encoding scheme to represent the spatial coordinates of multiple sources, which facilitates 2D localization of multiple sources in an end-to-end fashion, avoiding the permutation problem and achieving arbitrary spatial resolution. Experiments on a simulated data set and real recordings from the AV16.3 Corpus demonstrate that the proposed method generalizes well to unseen test conditions, and outperforms a recent time difference of arrival (TDOA) based multiple source localization approach reported in the literature.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"134 1","pages":"4642-4646"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
In this paper, we present an end-to-end deep convolutional neural network operating on multi-channel raw audio data to localize multiple simultaneously active acoustic sources in space. Previously reported deep learning based approaches work well in localizing a single source directly from multi-channel raw-audio, but are not easily extendable to localize multiple sources due to the well known permutation problem. We propose a novel encoding scheme to represent the spatial coordinates of multiple sources, which facilitates 2D localization of multiple sources in an end-to-end fashion, avoiding the permutation problem and achieving arbitrary spatial resolution. Experiments on a simulated data set and real recordings from the AV16.3 Corpus demonstrate that the proposed method generalizes well to unseen test conditions, and outperforms a recent time difference of arrival (TDOA) based multiple source localization approach reported in the literature.