Punching Capacity of UHPC Post Tensioned Flat Slabs with and Without Shear Reinforcement: An Experimental Study

Q3 Engineering
A. Afifi, Mohamed I Ramadan, A. Maree, A. Ebid, A. Zaher, Dina M. Ors
{"title":"Punching Capacity of UHPC Post Tensioned Flat Slabs with and Without Shear Reinforcement: An Experimental Study","authors":"A. Afifi, Mohamed I Ramadan, A. Maree, A. Ebid, A. Zaher, Dina M. Ors","doi":"10.28991/cej-2023-09-03-06","DOIUrl":null,"url":null,"abstract":"Punching capacity is one of the main items in the design of both pre-stressed and non-pre-stressed flat slabs. All international design codes include provisions to prevent this type of failure. Unfortunately, there is no code provision for UHPC yet, and hence, the aim of this research is to experimentally investigate the impact of column dimensions and punching reinforcement on the punching capacity of post-tensioned slabs and compare the results with the international design codes’ provisions to evaluate its validity. The test program included five slabs with a compressive strength of 120 MPa: one as a control sample, two to study the effect of column size, and the last two to study the effect of punching reinforcement. Comparing the results with the design codes showed that ACI-318 is more accurate with an average deviation of about 5%, while EC2 is more conservative with an average deviation of about 20%. Besides that, punching reinforcement reduces the size of the punching wedge by increasing the crack angle to 28° instead of 22° for slabs without punching reinforcement. Also, the results assure that both ductility and stiffness are enhanced with the increased column dimensions and punching reinforcement ratio. Doi: 10.28991/CEJ-2023-09-03-06 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-03-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Punching capacity is one of the main items in the design of both pre-stressed and non-pre-stressed flat slabs. All international design codes include provisions to prevent this type of failure. Unfortunately, there is no code provision for UHPC yet, and hence, the aim of this research is to experimentally investigate the impact of column dimensions and punching reinforcement on the punching capacity of post-tensioned slabs and compare the results with the international design codes’ provisions to evaluate its validity. The test program included five slabs with a compressive strength of 120 MPa: one as a control sample, two to study the effect of column size, and the last two to study the effect of punching reinforcement. Comparing the results with the design codes showed that ACI-318 is more accurate with an average deviation of about 5%, while EC2 is more conservative with an average deviation of about 20%. Besides that, punching reinforcement reduces the size of the punching wedge by increasing the crack angle to 28° instead of 22° for slabs without punching reinforcement. Also, the results assure that both ductility and stiffness are enhanced with the increased column dimensions and punching reinforcement ratio. Doi: 10.28991/CEJ-2023-09-03-06 Full Text: PDF
加、不加剪筋UHPC后张平板冲孔承载力试验研究
冲压能力是预应力和非预应力平板设计的主要内容之一。所有国际设计规范都包括防止这种类型的破坏的规定。不幸的是,目前还没有针对UHPC的规范规定,因此,本研究的目的是通过实验研究柱尺寸和冲孔配筋对后张板冲孔能力的影响,并将结果与国际设计规范的规定进行比较,以评估其有效性。试验方案包括5块抗压强度为120 MPa的板:1块作为对照试样,2块用于研究柱尺寸的影响,最后2块用于研究冲孔配筋的影响。结果表明,ACI-318较为准确,平均偏差约为5%,EC2较为保守,平均偏差约为20%。此外,冲孔加筋使未加筋板的裂纹角从22°增加到28°,从而减小了冲孔楔的尺寸。结果表明,随着柱尺寸的增大和冲孔配筋率的增大,柱的延性和刚度都得到了提高。Doi: 10.28991/CEJ-2023-09-03-06全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信