Abdul Qayoom Mugheri, Muhammad Soomar Samtio, S. Memon
{"title":"Nanostructured Composite Catalyst for Electrochemical Water Splitting: Significantly Improved for Hydrogen Evolution Reaction","authors":"Abdul Qayoom Mugheri, Muhammad Soomar Samtio, S. Memon","doi":"10.1166/sl.2020.4293","DOIUrl":null,"url":null,"abstract":"The evolutionary and rational design we incorporated for an efficient nonprecious metal nanocom-posite electrocatalysts for the hydrogen production which is a scientific challenge in the field of renewable energy. Herein, we report a simple and very active, the functional electrocatalyst\n for water oxidation which is highly demanded. It is of great prime importance for hydrogen evolution reaction (HER) which significantly contributes to renewable technologies. The values for electrocatalysts are NiCo2O4 and NiCo2O3/P Tafel slope 66\n and 42 mV/decade and overpotential of 382 and 320 mV and current density achieved at 10 mA/cm2 anin 1.0 M KOH. The composites are characterized by SEM, HR-TEM, X-ray diffraction, XPS, and SAED. The NiCo2O3/P having high durability measured for 50 hours and\n its EIS results holding a small charge transfer resistance 28.81 Ohms (Ω) and capacitance containing 0.81 mF. Finally, we give an outlook for the development of these nanoma-terials in the short- and mid-term, highlighting the critical challenges to confront for a lab-to-real life transition\n of these highly promising nanocomposites.","PeriodicalId":21781,"journal":{"name":"Sensor Letters","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sl.2020.4293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The evolutionary and rational design we incorporated for an efficient nonprecious metal nanocom-posite electrocatalysts for the hydrogen production which is a scientific challenge in the field of renewable energy. Herein, we report a simple and very active, the functional electrocatalyst
for water oxidation which is highly demanded. It is of great prime importance for hydrogen evolution reaction (HER) which significantly contributes to renewable technologies. The values for electrocatalysts are NiCo2O4 and NiCo2O3/P Tafel slope 66
and 42 mV/decade and overpotential of 382 and 320 mV and current density achieved at 10 mA/cm2 anin 1.0 M KOH. The composites are characterized by SEM, HR-TEM, X-ray diffraction, XPS, and SAED. The NiCo2O3/P having high durability measured for 50 hours and
its EIS results holding a small charge transfer resistance 28.81 Ohms (Ω) and capacitance containing 0.81 mF. Finally, we give an outlook for the development of these nanoma-terials in the short- and mid-term, highlighting the critical challenges to confront for a lab-to-real life transition
of these highly promising nanocomposites.
期刊介绍:
The growing interest and activity in the field of sensor technologies requires a forum for rapid dissemination of important results: Sensor Letters is that forum. Sensor Letters offers scientists, engineers and medical experts timely, peer-reviewed research on sensor science and technology of the highest quality. Sensor Letters publish original rapid communications, full papers and timely state-of-the-art reviews encompassing the fundamental and applied research on sensor science and technology in all fields of science, engineering, and medicine. Highest priority will be given to short communications reporting important new scientific and technological findings.