Numerical Method for 2D Quasi-linear Hyperbolic Equation on an Irrational Domain: Application to Telegraphic Equation

Bishnu Pada Ghosh, N. C. Roy
{"title":"Numerical Method for 2D Quasi-linear Hyperbolic Equation on an Irrational Domain: Application to Telegraphic Equation","authors":"Bishnu Pada Ghosh, N. C. Roy","doi":"10.3329/dujs.v69i2.56492","DOIUrl":null,"url":null,"abstract":"We develop a novel three-level compact method (implicit) of second order in time and space directions using unequal grid for the numerical solution of 2D quasi-linear hyperbolic partial differential equations on an irrational domain. The stability analysis of the model problem for unequal mesh is discussed and it is revealed that the developed scheme is unconditionally stable for the Telegraphic equation. For linear difference equations on an irrational domain, the alternating direction implicit method is discussed. The projected technique is scrutinized on several physical problems on an irrational domain to exhibitthe accuracy and effectiveness of the suggested method.\nDhaka Univ. J. Sci. 69(2): 116-123, 2021 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v69i2.56492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We develop a novel three-level compact method (implicit) of second order in time and space directions using unequal grid for the numerical solution of 2D quasi-linear hyperbolic partial differential equations on an irrational domain. The stability analysis of the model problem for unequal mesh is discussed and it is revealed that the developed scheme is unconditionally stable for the Telegraphic equation. For linear difference equations on an irrational domain, the alternating direction implicit method is discussed. The projected technique is scrutinized on several physical problems on an irrational domain to exhibitthe accuracy and effectiveness of the suggested method. Dhaka Univ. J. Sci. 69(2): 116-123, 2021 (July)
二维拟线性双曲型方程在无理区上的数值解法:在电报方程中的应用
本文提出了一种在时间和空间方向上使用不等网格的二阶三阶紧致方法(隐式),用于求解非合理域上二维拟线性双曲型偏微分方程的数值解。讨论了不等网格模型问题的稳定性分析,揭示了所开发的格式对于电报方程是无条件稳定的。讨论了非合理域上线性差分方程的交替方向隐式解法。在一个不合理域的物理问题上对投影技术进行了检验,证明了该方法的准确性和有效性。达卡大学学报(自然科学版),69(2):116-123,2021 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信