{"title":"Upper bounds of rates of complex orthogonal space-time block code","authors":"Haiquan Wang, X. Xia","doi":"10.1109/TIT.2003.817830","DOIUrl":null,"url":null,"abstract":"We derive some upper bounds of the rates of (generalized) complex orthogonal space-time block codes. We first present some new properties of complex orthogonal designs and then show that the rates of complex orthogonal space-time block codes for more than two transmit antennas are upper-bounded by 3/4. We show that the rates of generalized complex orthogonal space-time block codes for more than two transmit antennas are upper-bounded by 4/5, where the norms of column vectors may not be necessarily the same. We also present another upper bound under a certain condition. For a (generalized) complex orthogonal design, its variables are not restricted to any alphabet sets but are on the whole complex plane. A (generalized) complex orthogonal design with variables over some alphabet sets on the complex plane is also considered. We obtain a condition on the alphabet sets such that a (generalized) complex orthogonal design with variables over these alphabet sets is also a conventional (generalized) complex orthogonal design and, therefore, the above upper bounds on its rate also hold. We show that commonly used quadrature amplitude modulation (QAM) constellations of sizes above 4 satisfy this condition.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"41 1","pages":"2788-2796"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"225","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIT.2003.817830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 225
Abstract
We derive some upper bounds of the rates of (generalized) complex orthogonal space-time block codes. We first present some new properties of complex orthogonal designs and then show that the rates of complex orthogonal space-time block codes for more than two transmit antennas are upper-bounded by 3/4. We show that the rates of generalized complex orthogonal space-time block codes for more than two transmit antennas are upper-bounded by 4/5, where the norms of column vectors may not be necessarily the same. We also present another upper bound under a certain condition. For a (generalized) complex orthogonal design, its variables are not restricted to any alphabet sets but are on the whole complex plane. A (generalized) complex orthogonal design with variables over some alphabet sets on the complex plane is also considered. We obtain a condition on the alphabet sets such that a (generalized) complex orthogonal design with variables over these alphabet sets is also a conventional (generalized) complex orthogonal design and, therefore, the above upper bounds on its rate also hold. We show that commonly used quadrature amplitude modulation (QAM) constellations of sizes above 4 satisfy this condition.