Cauchy Completeness, Lax Epimorphisms and Effective Descent for Split Fibrations

Pub Date : 2022-10-21 DOI:10.36045/j.bbms.221021
Fernando Lucatelli Nunes, Rui Prezado, L. Sousa
{"title":"Cauchy Completeness, Lax Epimorphisms and Effective Descent for Split Fibrations","authors":"Fernando Lucatelli Nunes, Rui Prezado, L. Sousa","doi":"10.36045/j.bbms.221021","DOIUrl":null,"url":null,"abstract":"For any suitable base category $\\mathcal{V} $, we find that $\\mathcal{V} $-fully faithful lax epimorphisms in $\\mathcal{V} $-$\\mathsf{Cat} $ are precisely those $\\mathcal{V}$-functors $F \\colon \\mathcal{A} \\to \\mathcal{B}$ whose induced $\\mathcal{V} $-functors $\\mathsf{Cauchy} F \\colon \\mathsf{Cauchy} \\mathcal{A} \\to \\mathsf{Cauchy} \\mathcal{B} $ between the Cauchy completions are equivalences. For the case $\\mathcal{V} = \\mathsf{Set} $, this is equivalent to requiring that the induced functor $\\mathsf{CAT} \\left( F,\\mathsf{Cat}\\right) $ between the categories of split (op)fibrations is an equivalence. By reducing the study of effective descent functors with respect to the indexed category of split (op)fibrations $\\mathcal{F}$ to the study of the codescent factorization, we find that these observations on fully faithful lax epimorphisms provide us with a characterization of (effective) $\\mathcal{F}$-descent morphisms in the category of small categories $\\mathcal{Cat}$; namely, we find that they are precisely the (effective) descent morphisms with respect to the indexed categories of discrete opfibrations -- previously studied by Sobral. We include some comments on the Beck-Chevalley condition and future work.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.221021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any suitable base category $\mathcal{V} $, we find that $\mathcal{V} $-fully faithful lax epimorphisms in $\mathcal{V} $-$\mathsf{Cat} $ are precisely those $\mathcal{V}$-functors $F \colon \mathcal{A} \to \mathcal{B}$ whose induced $\mathcal{V} $-functors $\mathsf{Cauchy} F \colon \mathsf{Cauchy} \mathcal{A} \to \mathsf{Cauchy} \mathcal{B} $ between the Cauchy completions are equivalences. For the case $\mathcal{V} = \mathsf{Set} $, this is equivalent to requiring that the induced functor $\mathsf{CAT} \left( F,\mathsf{Cat}\right) $ between the categories of split (op)fibrations is an equivalence. By reducing the study of effective descent functors with respect to the indexed category of split (op)fibrations $\mathcal{F}$ to the study of the codescent factorization, we find that these observations on fully faithful lax epimorphisms provide us with a characterization of (effective) $\mathcal{F}$-descent morphisms in the category of small categories $\mathcal{Cat}$; namely, we find that they are precisely the (effective) descent morphisms with respect to the indexed categories of discrete opfibrations -- previously studied by Sobral. We include some comments on the Beck-Chevalley condition and future work.
分享
查看原文
裂裂纤颤的柯西完备性、松弛表胚及有效下降
对于任意合适的基范畴$\mathcal{V}$,我们发现$\mathcal{V}$- $\mathsf{Cat} $中的$\mathcal{V}$-函子$F \冒号\mathcal{A} \到$ mathcal{B}$的完全忠实松弛外模正是$\mathcal{V}$-函子$\mathsf{Cauchy} F \冒号\mathsf{Cauchy} \mathcal{A}到$ mathsf{Cauchy} $之间的柯西补全是等价的。对于$\mathcal{V} = \mathsf{Set} $的情况,这相当于要求在分裂(op)纤维的类别之间的诱导函子$\mathsf{CAT} \left(F,\mathsf{CAT} \right) $是等价的。通过将关于分裂(op)纤维$\mathcal{F}$的索引范畴的有效下降函子的研究简化为对编码分解的研究,我们发现这些关于完全忠实的松弛泛型的观察为我们提供了小范畴$\mathcal{Cat}$的(有效)$\mathcal{F}$-下降态射的表征;也就是说,我们发现它们恰恰是离散操作的索引类别的(有效)下降态射——之前由Sobral研究过。我们还对贝克-切瓦利条件和今后的工作提出了一些意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信