Making Gabor Noise Fast and Normalized

Vincent Tavernier, Fabrice Neyret, Romain Vergne, J. Thollot
{"title":"Making Gabor Noise Fast and Normalized","authors":"Vincent Tavernier, Fabrice Neyret, Romain Vergne, J. Thollot","doi":"10.2312/egs.20191009","DOIUrl":null,"url":null,"abstract":"Gabor Noise is a powerful procedural texture synthesis technique, but it has two major drawbacks: It is costly due to the high required splat density and not always predictable because properties of instances can differ from those of the process. We bench performance and quality using alternatives for each Gabor Noise ingredient: point distribution, kernel weighting and kernel shape. For this, we introduce 3 objective criteria to measure process convergence, process stationarity, and instance stationarity. We show that minor implementation changes allow for 17-24x speed-up with same or better quality.","PeriodicalId":72958,"journal":{"name":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","volume":"150 1","pages":"37-40"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics ... Workshop on 3D Object Retrieval : EG 3DOR. Eurographics Workshop on 3D Object Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/egs.20191009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Gabor Noise is a powerful procedural texture synthesis technique, but it has two major drawbacks: It is costly due to the high required splat density and not always predictable because properties of instances can differ from those of the process. We bench performance and quality using alternatives for each Gabor Noise ingredient: point distribution, kernel weighting and kernel shape. For this, we introduce 3 objective criteria to measure process convergence, process stationarity, and instance stationarity. We show that minor implementation changes allow for 17-24x speed-up with same or better quality.
使Gabor噪声快速和标准化
Gabor Noise是一种强大的程序纹理合成技术,但它有两个主要缺点:由于需要很高的碎片密度,它的成本很高,并且由于实例的属性可能与过程的属性不同,它并不总是可预测的。我们使用每个Gabor噪声成分的替代方案来测试性能和质量:点分布,核加权和核形状。为此,我们引入了3个客观标准来衡量过程收敛性、过程平稳性和实例平稳性。我们表明,微小的实现变化允许17-24倍的速度提高,具有相同或更好的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信