Extremal numbers of disjoint triangles in r-partite graphs

Junxue Zhang
{"title":"Extremal numbers of disjoint triangles in r-partite graphs","authors":"Junxue Zhang","doi":"10.48550/arXiv.2208.01470","DOIUrl":null,"url":null,"abstract":"For two graphs $G$ and $F$, the extremal number of $F$ in $G$, denoted by {ex}$(G,F)$, is the maximum number of edges in a spanning subgraph of $G$ not containing $F$ as a subgraph. Determining {ex}$(K_n,F)$ for a given graph $F$ is a classical extremal problem in graph theory. In 1962, Erd\\H{o}s determined {ex}$(K_n,kK_3)$, which generalized Mantel's Theorem. On the other hand, in 1974, {Bollob\\'{a}s}, Erd\\H{o}s, and Straus determined {ex}$(K_{n_1,n_2,\\dots,n_r},K_t)$, which extended Tur\\'{a}n's Theorem to complete multipartite graphs. { In this paper,} we determine {ex}$(K_{n_1,n_2,\\dots,n_r},kK_3)$ for $r\\ge 4$ and $10k-4\\le n_1+4k\\le n_2\\le n_3\\le \\cdots \\le n_r$.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.01470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For two graphs $G$ and $F$, the extremal number of $F$ in $G$, denoted by {ex}$(G,F)$, is the maximum number of edges in a spanning subgraph of $G$ not containing $F$ as a subgraph. Determining {ex}$(K_n,F)$ for a given graph $F$ is a classical extremal problem in graph theory. In 1962, Erd\H{o}s determined {ex}$(K_n,kK_3)$, which generalized Mantel's Theorem. On the other hand, in 1974, {Bollob\'{a}s}, Erd\H{o}s, and Straus determined {ex}$(K_{n_1,n_2,\dots,n_r},K_t)$, which extended Tur\'{a}n's Theorem to complete multipartite graphs. { In this paper,} we determine {ex}$(K_{n_1,n_2,\dots,n_r},kK_3)$ for $r\ge 4$ and $10k-4\le n_1+4k\le n_2\le n_3\le \cdots \le n_r$.
r部图中不相交三角形的极值数
对于两个图$G$和$F$, $G$中$F$的极值数,用{ex}$(G,F)$表示,是$G$的生成子图中不包含$F$的最大边数。确定给定图{}$F$的ex$(K_n,F)$是图论中的一个经典极值问题。1962年,Erd \H{o}确定了{ex}$(K_n,kK_3)$,推广了曼特尔定理。另一方面,1974年{Bollobás}、Erd \H{o} s和Straus确定了{ex}$(K_{n_1,n_2,\dots,n_r},K_t)$,将Turán定理推广到完全多部图。{在本文中},我们确定了{}$r\ge 4$和$10k-4\le n_1+4k\le n_2\le n_3\le \cdots \le n_r$的ex$(K_{n_1,n_2,\dots,n_r},kK_3)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信