{"title":"Signal characterization using Fractal Dimension","authors":"B. S. Raghavendra, D. Dutt","doi":"10.1109/TENCON.2008.4766845","DOIUrl":null,"url":null,"abstract":"Fractal Dimensions (FD) are popular metrics for characterizing signals. They are used as complexity measures in signal analysis applications in various fields. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency, number of harmonics, noise power and signal bandwidth. We have used Higuchipsilas method for estimating FDs. This study helps in gaining a better understanding of the FD complexity measure for various signal parameters. Our results indicate that FD is a useful metric in estimating various signal properties. As an application of the FD measure in real world scenario, the FD is used as a feature in discriminating seizures from seizure free intervals in intracranial EEG data recordings and the FD feature has given good discrimination performance.","PeriodicalId":22230,"journal":{"name":"TENCON 2008 - 2008 IEEE Region 10 Conference","volume":"39 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2008 - 2008 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2008.4766845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Fractal Dimensions (FD) are popular metrics for characterizing signals. They are used as complexity measures in signal analysis applications in various fields. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency, number of harmonics, noise power and signal bandwidth. We have used Higuchipsilas method for estimating FDs. This study helps in gaining a better understanding of the FD complexity measure for various signal parameters. Our results indicate that FD is a useful metric in estimating various signal properties. As an application of the FD measure in real world scenario, the FD is used as a feature in discriminating seizures from seizure free intervals in intracranial EEG data recordings and the FD feature has given good discrimination performance.