Magnetic field transport in propagating thermonuclear burn

B. Appelbe, A. Velikovich, M. Sherlock, C. Walsh, A. Crilly, S. O' Neill, J. Chittenden
{"title":"Magnetic field transport in propagating thermonuclear burn","authors":"B. Appelbe, A. Velikovich, M. Sherlock, C. Walsh, A. Crilly, S. O' Neill, J. Chittenden","doi":"10.1063/5.0040161","DOIUrl":null,"url":null,"abstract":"High energy gain in inertial fusion schemes requires the propagation of a thermonuclear burn wave from hot to cold fuel. We consider the problem of burn propagation when a magnetic field is orthogonal to the burn wave. Using an extended-MHD model with a magnetized $\\alpha$ energy transport equation we find that the magnetic field can reduce the rate of burn propagation by suppressing electron thermal conduction and $\\alpha$ particle flux. Magnetic field transport during burn propagation is subject to competing effects: field can be advected from cold to hot regions by ablation of cold fuel, while the Nernst and $\\alpha$ particle flux effects transport field from hot to cold fuel. These effects, combined with the temperature increase due to burn, can cause the electron Hall parameter to grow rapidly at the burn front. This results in the formation of a self-insulating layer between hot and cold fuel that reduces electron thermal conductivity and $\\alpha$ transport, increases the temperature gradient and reduces the rate of burn propagation.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0040161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

High energy gain in inertial fusion schemes requires the propagation of a thermonuclear burn wave from hot to cold fuel. We consider the problem of burn propagation when a magnetic field is orthogonal to the burn wave. Using an extended-MHD model with a magnetized $\alpha$ energy transport equation we find that the magnetic field can reduce the rate of burn propagation by suppressing electron thermal conduction and $\alpha$ particle flux. Magnetic field transport during burn propagation is subject to competing effects: field can be advected from cold to hot regions by ablation of cold fuel, while the Nernst and $\alpha$ particle flux effects transport field from hot to cold fuel. These effects, combined with the temperature increase due to burn, can cause the electron Hall parameter to grow rapidly at the burn front. This results in the formation of a self-insulating layer between hot and cold fuel that reduces electron thermal conductivity and $\alpha$ transport, increases the temperature gradient and reduces the rate of burn propagation.
热核燃烧传播过程中的磁场输运
惯性聚变方案中的高能量增益要求热核燃烧波从热燃料传播到冷燃料。研究了当磁场与燃烧波正交时的燃烧传播问题。利用具有磁化$\ α $能量输运方程的扩展mhd模型,我们发现磁场可以通过抑制电子热传导和$\ α $粒子通量来降低燃烧传播速率。在燃烧传播过程中,磁场输运受到竞争效应的影响:磁场可以通过冷燃料的烧蚀从冷区域平流到热区域,而能量和α粒子通量影响从热到冷燃料的输运场。这些影响,加上燃烧引起的温度升高,会导致电子霍尔参数在燃烧前迅速增长。这导致在冷热燃料之间形成自绝缘层,从而降低电子导热性和α输输,增加温度梯度并降低燃烧传播速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信