Removing Moving Objects without Registration from 3D LiDAR Data Using Range Flow Coupled with IMU Measurements

Remote. Sens. Pub Date : 2023-07-03 DOI:10.3390/rs15133390
Y. Cai, Bi-jun Li, Jian Zhou, Hongjuan Zhang, Yongxing Cao
{"title":"Removing Moving Objects without Registration from 3D LiDAR Data Using Range Flow Coupled with IMU Measurements","authors":"Y. Cai, Bi-jun Li, Jian Zhou, Hongjuan Zhang, Yongxing Cao","doi":"10.3390/rs15133390","DOIUrl":null,"url":null,"abstract":"Removing moving objects from 3D LiDAR data plays a crucial role in advancing real-time odometry, life-long SLAM, and motion planning for robust autonomous navigation. In this paper, we present a novel method aimed at addressing the challenges faced by existing approaches when dealing with scenarios involving significant registration errors. The proposed approach offers a unique solution for removing moving objects without the need for registration, leveraging range flow estimation combined with IMU measurements. To this end, our method performs global range flow estimation by utilizing geometric constraints based on the spatio-temporal gradient information derived from the range image, and we introduce IMU measurements to further enhance the accuracy of range flow estimation. Through extensive quantitative evaluations, our approach showcases an improved performance, with an average mIoU of 45.8%, surpassing baseline methods such as Removert (43.2%) and Peopleremover (32.2%). Specifically, it exhibits a substantial improvement in scenarios characterized by a deterioration in registration performance. Moreover, our method does not rely on costly annotations, which make it suitable for SLAM systems with different sensor setups.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"129 1","pages":"3390"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Removing moving objects from 3D LiDAR data plays a crucial role in advancing real-time odometry, life-long SLAM, and motion planning for robust autonomous navigation. In this paper, we present a novel method aimed at addressing the challenges faced by existing approaches when dealing with scenarios involving significant registration errors. The proposed approach offers a unique solution for removing moving objects without the need for registration, leveraging range flow estimation combined with IMU measurements. To this end, our method performs global range flow estimation by utilizing geometric constraints based on the spatio-temporal gradient information derived from the range image, and we introduce IMU measurements to further enhance the accuracy of range flow estimation. Through extensive quantitative evaluations, our approach showcases an improved performance, with an average mIoU of 45.8%, surpassing baseline methods such as Removert (43.2%) and Peopleremover (32.2%). Specifically, it exhibits a substantial improvement in scenarios characterized by a deterioration in registration performance. Moreover, our method does not rely on costly annotations, which make it suitable for SLAM systems with different sensor setups.
使用距离流和IMU测量从3D激光雷达数据中去除无配准的运动物体
从3D激光雷达数据中去除移动物体在推进实时里程计、终身SLAM和运动规划方面发挥着至关重要的作用,从而实现强大的自主导航。在本文中,我们提出了一种新的方法,旨在解决现有方法在处理涉及重大配准错误的场景时所面临的挑战。所提出的方法提供了一种独特的解决方案,可以在不需要配准的情况下去除运动物体,利用距离流估计与IMU测量相结合。为此,该方法利用基于距离图像时空梯度信息的几何约束进行全局距离流量估计,并引入IMU测量进一步提高距离流量估计的精度。通过广泛的定量评估,我们的方法展示了改进的性能,平均mIoU为45.8%,超过了Removert(43.2%)和peoplerover(32.2%)等基准方法。具体来说,它在以注册性能恶化为特征的场景中表现出了实质性的改进。此外,我们的方法不依赖于昂贵的注释,这使得它适用于具有不同传感器设置的SLAM系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信