Real-Time Objects Detection, Tracking, and Counting Using Image Processing Techniques

Mohammed H. Alhayani
{"title":"Real-Time Objects Detection, Tracking, and Counting Using Image Processing Techniques","authors":"Mohammed H. Alhayani","doi":"10.29194/njes.26010024","DOIUrl":null,"url":null,"abstract":"As a result of the tremendous development taking place in modern systems and technologies in the field of electronic monitoring. Intelligent monitoring, decision making, and automated response systems have become common subjects at this time, especially after the development of machines responsible for these processes. Traffic surveillance is a trend goal nowadays using different techniques and equipment. In this article, real-time Object detection and tracking techniques were proposed for traffic surveillance using image processing techniques. A state was specifically examined for its ability to detect and count passing motorcycles on a highway in a specific area. The results showed good reliability, with a frame processing time of approximately about (30 ms) and the achievement of real-time performance. The main contribution of this article is reaching the best result implemented by the performance the real-time process using image process technique and tracking the object by depending on the sequencing of frames and can stands with rationally not so powerful machines. Several tools have been used for different types of necessary tasks that will be part of the required application such as Python 3.7; which was used to build the basic algorithms,Visual studio code (VSC) as an Integrated Development Environment (IDE), and Anaconda navigator for downloading many useful libraries. The specifications of the used device were Intel(R) Core (TM) i7- 10750H CPU @ 2.60GHz 2.59 GHz, RAM 16.0 GB, NVIDIA GeForce GTX 1650 GPU, 64-bit operating system, x64-based processor.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29194/njes.26010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of the tremendous development taking place in modern systems and technologies in the field of electronic monitoring. Intelligent monitoring, decision making, and automated response systems have become common subjects at this time, especially after the development of machines responsible for these processes. Traffic surveillance is a trend goal nowadays using different techniques and equipment. In this article, real-time Object detection and tracking techniques were proposed for traffic surveillance using image processing techniques. A state was specifically examined for its ability to detect and count passing motorcycles on a highway in a specific area. The results showed good reliability, with a frame processing time of approximately about (30 ms) and the achievement of real-time performance. The main contribution of this article is reaching the best result implemented by the performance the real-time process using image process technique and tracking the object by depending on the sequencing of frames and can stands with rationally not so powerful machines. Several tools have been used for different types of necessary tasks that will be part of the required application such as Python 3.7; which was used to build the basic algorithms,Visual studio code (VSC) as an Integrated Development Environment (IDE), and Anaconda navigator for downloading many useful libraries. The specifications of the used device were Intel(R) Core (TM) i7- 10750H CPU @ 2.60GHz 2.59 GHz, RAM 16.0 GB, NVIDIA GeForce GTX 1650 GPU, 64-bit operating system, x64-based processor.
实时对象检测,跟踪,计数使用图像处理技术
由于现代系统和技术在电子监控领域的巨大发展。智能监控、决策制定和自动响应系统已经成为当前的常见主题,特别是在负责这些过程的机器开发之后。使用各种技术和设备进行交通监控是当今的趋势目标。本文提出了基于图像处理技术的交通监控实时目标检测与跟踪技术。一个州在特定区域的高速公路上检测和统计过往摩托车的能力。结果表明,该算法具有良好的可靠性,帧处理时间约为(30ms),实现了实时性。本文的主要贡献在于利用图像处理技术实现实时过程的性能,并根据帧的顺序对目标进行跟踪,从而达到最佳效果,可以与功能不那么强大的机器相适应。一些工具已经用于不同类型的必要任务,这些任务将成为所需应用程序(如Python 3.7)的一部分;它用于构建基本算法,Visual studio代码(VSC)作为集成开发环境(IDE),以及用于下载许多有用库的Anaconda导航器。使用的设备规格为Intel(R) Core (TM) i7- 10750H CPU @ 2.60GHz 2.59 GHz, RAM 16.0 GB, NVIDIA GeForce GTX 1650 GPU, 64位操作系统,x64处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信