Seung-Min Baek, Wan-Soo Kim, Kim Yong Joo, Chung Sun-Ok, Kyu-Chul Nam, Lee Daehyun
{"title":"Development of a real-time crop recognition system using a stereo camera","authors":"Seung-Min Baek, Wan-Soo Kim, Kim Yong Joo, Chung Sun-Ok, Kyu-Chul Nam, Lee Daehyun","doi":"10.7744/KJOAS.20200022","DOIUrl":null,"url":null,"abstract":"In this study, a real-time crop recognition system was developed for an unmanned farm machine for upland farming. The crop recognition system was developed based on a stereo camera, and an image processing framework was proposed that consists of disparity matching, localization of crop area, and estimation of crop height with coordinate transformations. The performance was evaluated by attaching the crop recognition system to a tractor for five representative crops (cabbage, potato, sesame, radish, and soybean). The test condition was set at 3 levels of distances to the crop (100, 150, and 200 cm) and 5 levels of camera height (42, 44, 46, 48, and 50 cm). The mean relative error (MRE) was used to compare the height between the measured and estimated results. As a result, the MRE of Chinese cabbage was the lowest at 1.70%, and the MRE of soybean was the highest at 4.97%. It is considered that the MRE of the crop which has more similar distribution lower. the results showed that all crop height was estimated with less than 5% MRE. The developed crop recognition system can be applied to various agricultural machinery which enhances the accuracy of crop detection and its performance in various illumination conditions.","PeriodicalId":17916,"journal":{"name":"Korean Journal of Agricultural Science","volume":"136 1","pages":"315-326"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7744/KJOAS.20200022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a real-time crop recognition system was developed for an unmanned farm machine for upland farming. The crop recognition system was developed based on a stereo camera, and an image processing framework was proposed that consists of disparity matching, localization of crop area, and estimation of crop height with coordinate transformations. The performance was evaluated by attaching the crop recognition system to a tractor for five representative crops (cabbage, potato, sesame, radish, and soybean). The test condition was set at 3 levels of distances to the crop (100, 150, and 200 cm) and 5 levels of camera height (42, 44, 46, 48, and 50 cm). The mean relative error (MRE) was used to compare the height between the measured and estimated results. As a result, the MRE of Chinese cabbage was the lowest at 1.70%, and the MRE of soybean was the highest at 4.97%. It is considered that the MRE of the crop which has more similar distribution lower. the results showed that all crop height was estimated with less than 5% MRE. The developed crop recognition system can be applied to various agricultural machinery which enhances the accuracy of crop detection and its performance in various illumination conditions.