Detection of UAV hijacking and malfunctions via variations in flight data statistics

Jason McNeely, M. Hatfield, Abir Hasan, Nusrat Jahan
{"title":"Detection of UAV hijacking and malfunctions via variations in flight data statistics","authors":"Jason McNeely, M. Hatfield, Abir Hasan, Nusrat Jahan","doi":"10.1109/CCST.2016.7815713","DOIUrl":null,"url":null,"abstract":"Detection of potential hijackings of Unmanned Aerial Vehicles (UAVs) is an important capability to have for the safety of the future airspace and prevention of loss of life and property. In this paper, we propose using basic statistical measures as a fingerprint to flight patterns that can be checked against previous flights. We generated baseline flights and then simulated hijacking scenarios to determine the extent of the feasibility of this method. Our results indicated that all of the direct hijacking scenarios were detected, but flights with control instability caused by malicious acts were not detected.","PeriodicalId":6510,"journal":{"name":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","volume":"38 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2016.7815713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Detection of potential hijackings of Unmanned Aerial Vehicles (UAVs) is an important capability to have for the safety of the future airspace and prevention of loss of life and property. In this paper, we propose using basic statistical measures as a fingerprint to flight patterns that can be checked against previous flights. We generated baseline flights and then simulated hijacking scenarios to determine the extent of the feasibility of this method. Our results indicated that all of the direct hijacking scenarios were detected, but flights with control instability caused by malicious acts were not detected.
通过飞行数据统计的变化检测无人机劫持和故障
探测潜在的无人机劫持是未来空域安全和防止生命财产损失的重要能力。在本文中,我们建议使用基本的统计措施作为飞行模式的指纹,可以对照以前的航班进行检查。我们生成基线飞行,然后模拟劫持场景,以确定该方法的可行性程度。我们的研究结果表明,所有的直接劫持场景都被检测到,但由于恶意行为导致的控制不稳定的航班没有被检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信