Disproof of a conjecture of Erdös and moser on tournaments

K.B. Reid , E.T. Parker
{"title":"Disproof of a conjecture of Erdös and moser on tournaments","authors":"K.B. Reid ,&nbsp;E.T. Parker","doi":"10.1016/S0021-9800(70)80061-8","DOIUrl":null,"url":null,"abstract":"<div><p>Erdös and Moser [1] displayed a tournament of order 7 with no transitive subtournament of order 4 and conjectured for each positive integer <em>k</em> existence of a tournament of order 2<sup><em>k</em>−1</sup>−1 with no transitive subtournament of order <em>k</em>. The conjecture is disproved for <em>k</em>=5. Further, every tournament of order 14 has a transitive subtournament of order 5. Inductively, the conjecture is false for all orders above 5. Existence and uniqueness of a tournament of order 13 having no transitive subtournament of order 5 are shown.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 3","pages":"Pages 225-238"},"PeriodicalIF":0.0000,"publicationDate":"1970-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80061-8","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Erdös and Moser [1] displayed a tournament of order 7 with no transitive subtournament of order 4 and conjectured for each positive integer k existence of a tournament of order 2k−1−1 with no transitive subtournament of order k. The conjecture is disproved for k=5. Further, every tournament of order 14 has a transitive subtournament of order 5. Inductively, the conjecture is false for all orders above 5. Existence and uniqueness of a tournament of order 13 having no transitive subtournament of order 5 are shown.

对Erdös和moser关于比赛的猜想的反驳
Erdös和Moser[1]给出了一个没有4阶传递子竞赛的7阶竞赛,并推测对于每一个正整数k存在一个没有k阶传递子竞赛的2k−1−1阶竞赛。对于k=5,该猜想被证明是错误的。而且,每一个14阶的比武都有一个5阶的可传递子比武。归纳地说,这个猜想对所有大于5的阶都是假的。给出了一个不存在5阶可传递子斗笠的13阶斗笠的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信