Nonparametric Regression with Stochastic Boundary and Regression Discontinuity with Endogenous Cutoff

Jiafeng Chen
{"title":"Nonparametric Regression with Stochastic Boundary and Regression Discontinuity with Endogenous Cutoff","authors":"Jiafeng Chen","doi":"10.2139/ssrn.3510899","DOIUrl":null,"url":null,"abstract":"We augment the usual regression discontinuity design model by considering an endogenously chosen cutoff, perhaps chosen to maximize certain criterion that the treatment provider has. This regime faces the challenge that, conditional on realization of the cutoff, observations are no longer i.i.d. We develop conditions under which an asymptotic expansion of the locally linear estimator contains a bias term caused by the endogeneity of order op(h2 +1/√nh). The lower order bias justifies the usual optimal bandwidth selection and bias correction procedures in this setting, though it places constraints on the maximal degree of undersmoothing.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3510899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We augment the usual regression discontinuity design model by considering an endogenously chosen cutoff, perhaps chosen to maximize certain criterion that the treatment provider has. This regime faces the challenge that, conditional on realization of the cutoff, observations are no longer i.i.d. We develop conditions under which an asymptotic expansion of the locally linear estimator contains a bias term caused by the endogeneity of order op(h2 +1/√nh). The lower order bias justifies the usual optimal bandwidth selection and bias correction procedures in this setting, though it places constraints on the maximal degree of undersmoothing.
具有随机边界的非参数回归和具有内生截止的回归不连续
我们通过考虑一个内源性选择的截止点来增强通常的回归不连续设计模型,该截止点可能是为了最大化治疗提供者所拥有的某些标准。该区域面临的挑战是,在截断实现的条件下,观测值不再是i.i.d。我们开发了局部线性估计量的渐近展开包含由op(h2 +1/√nh)阶内生性引起的偏置项的条件。在这种情况下,低阶偏置证明了通常的最佳带宽选择和偏置校正程序是正确的,尽管它对欠平滑的最大程度施加了限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信