Mass Transfer Effects on Stokes Problem for an Infinite Vertical Plate in a Rotating Fluid.

R. M. Lahurikar, V. T. Gitte, P. Patil
{"title":"Mass Transfer Effects on Stokes Problem for an Infinite Vertical Plate in a Rotating Fluid.","authors":"R. M. Lahurikar, V. T. Gitte, P. Patil","doi":"10.9790/9622-0707020109","DOIUrl":null,"url":null,"abstract":"An exact solution to the unsteady free convection flow of viscous incompressible fluid, in the presence of foreign mass, past an impulsively started infinite vertical isothermal plate in a rotating fluid, has been derived by Laplace-Transform technique. Axial and transverse velocity profiles are shown on graphs and numerical values of skin friction are listed in a table. It is observed that the non dimensional rotational parameter Rc increases there is fall in axial velocity profiles for all prandtl numbers because the coriolis forces oppose the fluid flow , hence the motion gets slow down . As Rc < 10 -3 the flow field becomes unstable and flow is converted to the turbulent flow for all Prandtl numbers (i.e. Pr = .71 for air when Ma<<1 and Pr = 7 for water). The flow of water may become unstable at large values of time t. Increase in Schmidt number leads to decrease in axial velocity for air and water. The diffusion parameter ,N, increases leads to rise in axial velocity because the buoyancy flow forces assist the flow and the transverse skin friction increases for both air and water, the axial skin friction decreases for air and increases for water.","PeriodicalId":13972,"journal":{"name":"International Journal of Engineering Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/9622-0707020109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An exact solution to the unsteady free convection flow of viscous incompressible fluid, in the presence of foreign mass, past an impulsively started infinite vertical isothermal plate in a rotating fluid, has been derived by Laplace-Transform technique. Axial and transverse velocity profiles are shown on graphs and numerical values of skin friction are listed in a table. It is observed that the non dimensional rotational parameter Rc increases there is fall in axial velocity profiles for all prandtl numbers because the coriolis forces oppose the fluid flow , hence the motion gets slow down . As Rc < 10 -3 the flow field becomes unstable and flow is converted to the turbulent flow for all Prandtl numbers (i.e. Pr = .71 for air when Ma<<1 and Pr = 7 for water). The flow of water may become unstable at large values of time t. Increase in Schmidt number leads to decrease in axial velocity for air and water. The diffusion parameter ,N, increases leads to rise in axial velocity because the buoyancy flow forces assist the flow and the transverse skin friction increases for both air and water, the axial skin friction decreases for air and increases for water.
旋转流体中无限大垂直板Stokes问题的传质效应。
利用拉普拉斯变换技术,导出了粘性不可压缩流体在外来质量存在下,在旋转流体中经过一个脉冲启动的无限大垂直等温板的非定常自由对流的精确解。轴向和横向速度分布以图形表示,表面摩擦的数值列在表格中。观察到,由于科里奥利力与流体流动相反,在所有普朗特数下,无量纲旋转参数Rc增加,轴向速度分布下降,因此运动变慢。当Rc < 10 -3时,流场变得不稳定,对于所有普朗特数(即当Ma<<1时,空气的Pr = 0.71,水的Pr = 7),流动都转化为湍流。在时间t较大时,水流可能变得不稳定。施密特数的增加导致空气和水的轴向速度降低。扩散参数N的增大导致轴向速度的增大,这是由于浮力流动力的辅助作用,空气和水的横向表面摩擦力都增大,空气的轴向表面摩擦力减小,水的轴向表面摩擦力增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信