SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation

Fan Bai, K. Yan, Xiaoyu Bai, Xinyu Mao, Xiaoli Yin, Jingren Zhou, Yu Shi, Le Lu, Max Q.-H. Meng
{"title":"SLPT: Selective Labeling Meets Prompt Tuning on Label-Limited Lesion Segmentation","authors":"Fan Bai, K. Yan, Xiaoyu Bai, Xinyu Mao, Xiaoli Yin, Jingren Zhou, Yu Shi, Le Lu, Max Q.-H. Meng","doi":"10.48550/arXiv.2308.04911","DOIUrl":null,"url":null,"abstract":"Medical image analysis using deep learning is often challenged by limited labeled data and high annotation costs. Fine-tuning the entire network in label-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from limited labeled data while keeping the pre-trained model unchanged. However, previous work has overlooked the importance of selective labeling in downstream tasks, which aims to select the most valuable downstream samples for annotation to achieve the best performance with minimum annotation cost. To address this, we propose a framework that combines selective labeling with prompt tuning (SLPT) to boost performance in limited labels. Specifically, we introduce a feature-aware prompt updater to guide prompt tuning and a TandEm Selective LAbeling (TESLA) strategy. TESLA includes unsupervised diversity selection and supervised selection using prompt-based uncertainty. In addition, we propose a diversified visual prompt tuning strategy to provide multi-prompt-based discrepant predictions for TESLA. We evaluate our method on liver tumor segmentation and achieve state-of-the-art performance, outperforming traditional fine-tuning with only 6% of tunable parameters, also achieving 94% of full-data performance by labeling only 5% of the data.","PeriodicalId":18289,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"42 1","pages":"14-24"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.04911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical image analysis using deep learning is often challenged by limited labeled data and high annotation costs. Fine-tuning the entire network in label-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from limited labeled data while keeping the pre-trained model unchanged. However, previous work has overlooked the importance of selective labeling in downstream tasks, which aims to select the most valuable downstream samples for annotation to achieve the best performance with minimum annotation cost. To address this, we propose a framework that combines selective labeling with prompt tuning (SLPT) to boost performance in limited labels. Specifically, we introduce a feature-aware prompt updater to guide prompt tuning and a TandEm Selective LAbeling (TESLA) strategy. TESLA includes unsupervised diversity selection and supervised selection using prompt-based uncertainty. In addition, we propose a diversified visual prompt tuning strategy to provide multi-prompt-based discrepant predictions for TESLA. We evaluate our method on liver tumor segmentation and achieve state-of-the-art performance, outperforming traditional fine-tuning with only 6% of tunable parameters, also achieving 94% of full-data performance by labeling only 5% of the data.
SLPT:选择性标记满足对标记有限病变分割的及时调整
使用深度学习的医学图像分析经常受到标记数据有限和注释成本高的挑战。在标签有限的情况下对整个网络进行微调可能会导致过拟合和次优性能。最近,提示调优已经成为一种更有前途的技术,它将一些额外的可调参数作为提示引入到与任务无关的预训练模型中,并在保持预训练模型不变的同时,使用有限标记数据的监督只更新这些参数。然而,以往的工作忽略了选择性标注在下游任务中的重要性,其目的是选择最有价值的下游样本进行标注,以最小的标注成本获得最佳的性能。为了解决这个问题,我们提出了一个框架,将选择性标记与提示调优(SLPT)相结合,以提高有限标签下的性能。具体来说,我们引入了一个特征感知提示更新器来指导提示调谐和串联选择性标记(TESLA)策略。特斯拉包括无监督多样性选择和基于提示的不确定性的监督选择。此外,我们提出了一种多样化的视觉提示调整策略,为特斯拉提供基于多提示的差异预测。我们评估了我们在肝脏肿瘤分割方面的方法,并取得了最先进的性能,仅使用6%的可调参数就优于传统的微调,并且仅通过标记5%的数据就获得了94%的全数据性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信