Investigating and improving the efficiency of space-time codes in visible light communication systems based on a multi-input-multi-output channel model
{"title":"Investigating and improving the efficiency of space-time codes in visible light communication systems based on a multi-input-multi-output channel model","authors":"Mahdieh Heidari, Mahdi Akbari, S. Olyaee","doi":"10.2174/2352096516666230818102033","DOIUrl":null,"url":null,"abstract":"\n\nVisible light communication (VLC) is a new communication method for transmitting information through semiconductor lighting devices. One of the applicable methods to improve the spectral efficiency of the system is the multi-input-multiple-output (MIMO) structure. Also, carrierless amplitude-phase (CAP) modulation is a high-dimensional modulation technique that can be used to improve the data transmission rate in modern communication systems.\n\n\n\nIn this paper, carrierless amplitude-phase method is introduced in indoor optical communication systems to improve the performance of multi-input multi-output (MIMO) structures. The CAP modulation is considered a suitable method due to its low complexity and is introduced and studied in two structures with one carrier or CAP and multiple carriers or m-CAP.\n\n\n\nIn this study, the target system is simulated in m-CAP structures and the improvement is measured in the MIMO structure using this modulation. The results show that by using this method, the PAPR of the system was reduced compared to other research with the MIMO-OFDM structure. In addition, by not using FFT blocks, the computational and processing complexity was also reduced.\n\n\n\nIt has been shown that the use of m-CAP increases the data transfer rate and improves the spectral efficiency of the system. In addition to CAP, spatial modulation schemes can also help improve the spectral efficiency and power efficiency of the system. Moreover, the space-time code is combined with m-CAP modulation and it is shown that this idea improves the efficiency of the MIMO system.\n","PeriodicalId":43275,"journal":{"name":"Recent Advances in Electrical & Electronic Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Electrical & Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2352096516666230818102033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Visible light communication (VLC) is a new communication method for transmitting information through semiconductor lighting devices. One of the applicable methods to improve the spectral efficiency of the system is the multi-input-multiple-output (MIMO) structure. Also, carrierless amplitude-phase (CAP) modulation is a high-dimensional modulation technique that can be used to improve the data transmission rate in modern communication systems.
In this paper, carrierless amplitude-phase method is introduced in indoor optical communication systems to improve the performance of multi-input multi-output (MIMO) structures. The CAP modulation is considered a suitable method due to its low complexity and is introduced and studied in two structures with one carrier or CAP and multiple carriers or m-CAP.
In this study, the target system is simulated in m-CAP structures and the improvement is measured in the MIMO structure using this modulation. The results show that by using this method, the PAPR of the system was reduced compared to other research with the MIMO-OFDM structure. In addition, by not using FFT blocks, the computational and processing complexity was also reduced.
It has been shown that the use of m-CAP increases the data transfer rate and improves the spectral efficiency of the system. In addition to CAP, spatial modulation schemes can also help improve the spectral efficiency and power efficiency of the system. Moreover, the space-time code is combined with m-CAP modulation and it is shown that this idea improves the efficiency of the MIMO system.
期刊介绍:
Recent Advances in Electrical & Electronic Engineering publishes full-length/mini reviews and research articles, guest edited thematic issues on electrical and electronic engineering and applications. The journal also covers research in fast emerging applications of electrical power supply, electrical systems, power transmission, electromagnetism, motor control process and technologies involved and related to electrical and electronic engineering. The journal is essential reading for all researchers in electrical and electronic engineering science.