Aldrin Lorrenz A. Chan, Sarah Jane C. Lopez, Arvie Victor M. Masangkay, Lorico D. S. Lapitan Jr.
{"title":"Synthesis and Photocatalytic Activity of Ruthenium-Titania for Enhanced Decolorization of Malachite Green under Visible Light Illumination","authors":"Aldrin Lorrenz A. Chan, Sarah Jane C. Lopez, Arvie Victor M. Masangkay, Lorico D. S. Lapitan Jr.","doi":"10.18178/ijcea.2022.13.1.793","DOIUrl":null,"url":null,"abstract":"The photodecolorization of malachite green (MG) dye was effectively done using Ruthenium-doped TiO2 photocatalysts under visible light illumination. X-ray diffraction analysis revealed that anatase and rutile peaks were both found in undoped TiO2 while only anatase peaks were present in Ru-doped TiO2 systems which were calcined at 500°C. The 0.008 Ru-TiO2 photocatalysts calcined at 300°C showed broader peaks compared to those calcined at 500°C. Further increase of calcination temperature to 700°C promotes the transformation of anatase to rutile peaks. The photocatalytic activity of TiO2 was found to increase with the addition of Ruthenium ions, from 20% for undoped TiO2 to 87% for 0.80 Ru-doped TiO2. The maximum photocatalytic removal of MG dye was achieved using 1.50 g∙L-1 of catalyst loading for 0.008 Ru-doped TiO2. The TiO2 photocatalysts prepared at a calcination temperature of 500°C showed higher photodecolorization efficiency compared to those calcined at 300°C and 700°C. Kinetic studies revealed that the photodecolorization of MG using Ru-doped TiO2 followed a first order kinetics.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2022.13.1.793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The photodecolorization of malachite green (MG) dye was effectively done using Ruthenium-doped TiO2 photocatalysts under visible light illumination. X-ray diffraction analysis revealed that anatase and rutile peaks were both found in undoped TiO2 while only anatase peaks were present in Ru-doped TiO2 systems which were calcined at 500°C. The 0.008 Ru-TiO2 photocatalysts calcined at 300°C showed broader peaks compared to those calcined at 500°C. Further increase of calcination temperature to 700°C promotes the transformation of anatase to rutile peaks. The photocatalytic activity of TiO2 was found to increase with the addition of Ruthenium ions, from 20% for undoped TiO2 to 87% for 0.80 Ru-doped TiO2. The maximum photocatalytic removal of MG dye was achieved using 1.50 g∙L-1 of catalyst loading for 0.008 Ru-doped TiO2. The TiO2 photocatalysts prepared at a calcination temperature of 500°C showed higher photodecolorization efficiency compared to those calcined at 300°C and 700°C. Kinetic studies revealed that the photodecolorization of MG using Ru-doped TiO2 followed a first order kinetics.