Fast and Accurate Optimizer for Query Processing over Knowledge Graphs

Jingqi Wu, Rong Chen, Yubin Xia
{"title":"Fast and Accurate Optimizer for Query Processing over Knowledge Graphs","authors":"Jingqi Wu, Rong Chen, Yubin Xia","doi":"10.1145/3472883.3486991","DOIUrl":null,"url":null,"abstract":"This paper presents Gpl, a fast and accurate optimizer for query processing over knowledge graphs. Gpl is novel in three ways. First, Gpl proposes a type-centric approach to enhance the accuracy of cardinality estimation prominently, which naturally embeds the correlation of multiple query conditions into the existing type system of knowledge graphs. Second, to predict execution time accurately, Gpl constructs a specialized cost model for graph exploration scheme and tunes the coefficients with target hardware platform and graph data. Third, Gpl further uses a budget-aware strategy for plan enumeration with a greedy heuristic to boost the overall performance (i.e., optimization time and execution time) for various workloads. Evaluations with representative knowledge graphs and query benchmarks show that Gpl can select optimal plans for 33 of 39 queries and only incurs less than 5% slowdown on average compared to optimal results. In contrast, the state-of-the-art optimizer and manually tuned results will cause 100% and 36% slowdown, respectively.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472883.3486991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents Gpl, a fast and accurate optimizer for query processing over knowledge graphs. Gpl is novel in three ways. First, Gpl proposes a type-centric approach to enhance the accuracy of cardinality estimation prominently, which naturally embeds the correlation of multiple query conditions into the existing type system of knowledge graphs. Second, to predict execution time accurately, Gpl constructs a specialized cost model for graph exploration scheme and tunes the coefficients with target hardware platform and graph data. Third, Gpl further uses a budget-aware strategy for plan enumeration with a greedy heuristic to boost the overall performance (i.e., optimization time and execution time) for various workloads. Evaluations with representative knowledge graphs and query benchmarks show that Gpl can select optimal plans for 33 of 39 queries and only incurs less than 5% slowdown on average compared to optimal results. In contrast, the state-of-the-art optimizer and manually tuned results will cause 100% and 36% slowdown, respectively.
快速准确的知识图查询处理优化器
本文提出了一种快速、准确的知识图查询处理优化器Gpl。Gpl在三个方面是新颖的。首先,Gpl提出了一种以类型为中心的方法,显著提高了基数估计的准确性,该方法自然地将多个查询条件的相关性嵌入到现有的知识图类型系统中。其次,为了准确预测执行时间,Gpl为图探测方案构建了专门的成本模型,并根据目标硬件平台和图数据调整系数。第三,Gpl进一步使用预算感知策略进行计划枚举,并使用贪婪启发式来提高各种工作负载的整体性能(即优化时间和执行时间)。使用代表性知识图和查询基准的评估表明,Gpl可以为39个查询中的33个选择最优计划,并且与最优结果相比,平均只导致不到5%的减速。相比之下,最先进的优化器和手动调整的结果将分别导致100%和36%的减速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信