M. Nishida, S. Futami, I. Morita, Kazuhiko Maekawa, Sci-itsu Murota
{"title":"Hypoxia-reoxygenation inhibits gap junctional communication in cultured human umbilical vein endothelial cells.","authors":"M. Nishida, S. Futami, I. Morita, Kazuhiko Maekawa, Sci-itsu Murota","doi":"10.3109/10623320009072214","DOIUrl":null,"url":null,"abstract":"We studied the change in gap junctional intercellular communication (GJIC) on human umbilical vein endothelial cells (HUVEC) under hypoxia-reoxygenation (H-R) conditions by the fluorescence redistribution after photobleaching (FRAP) method. Confluent HUVEC monolayers were exposed to hypoxia (pO2<0.1%) for 12 hours, and then were returned to normal atmospheric conditions for reoxygenation. Contrast microscopic observation showed no significant changes in the morphology of the HUVEC at any times after H-R. Reoxygenation following hypoxia caused time-dependent decrease in GJIC, that is, GJIC reduction was induced after 2 hours and reached maximum at 4-6 hours which recovered to normal levels after 18 hours. Oxidant sensitive fluorescence dye assay revealed that the generation of intracellular free radicals increased during the first 2 hours after reoxygenation. Hydroxyl radical scavengers (MCI-186, DMSO) and an iron chelator (deferoxamine) abolished the reduction of GJIC due to H-R. However, SOD, catalase and probucol were essentially inactive on this reduction. These data suggest that ischemia-reperfusion injury may be caused by a functional defect of GJIC induced by reactive oxygen radicals.","PeriodicalId":11588,"journal":{"name":"Endothelium-journal of Endothelial Cell Research","volume":"95 1","pages":"279-86"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endothelium-journal of Endothelial Cell Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10623320009072214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
We studied the change in gap junctional intercellular communication (GJIC) on human umbilical vein endothelial cells (HUVEC) under hypoxia-reoxygenation (H-R) conditions by the fluorescence redistribution after photobleaching (FRAP) method. Confluent HUVEC monolayers were exposed to hypoxia (pO2<0.1%) for 12 hours, and then were returned to normal atmospheric conditions for reoxygenation. Contrast microscopic observation showed no significant changes in the morphology of the HUVEC at any times after H-R. Reoxygenation following hypoxia caused time-dependent decrease in GJIC, that is, GJIC reduction was induced after 2 hours and reached maximum at 4-6 hours which recovered to normal levels after 18 hours. Oxidant sensitive fluorescence dye assay revealed that the generation of intracellular free radicals increased during the first 2 hours after reoxygenation. Hydroxyl radical scavengers (MCI-186, DMSO) and an iron chelator (deferoxamine) abolished the reduction of GJIC due to H-R. However, SOD, catalase and probucol were essentially inactive on this reduction. These data suggest that ischemia-reperfusion injury may be caused by a functional defect of GJIC induced by reactive oxygen radicals.