Fatima Zahra Benaddi, L. Boukhattem, B. Benhamou, P. Tabares-Velasco, F. Nouh
{"title":"Thermal energy performance study of a classroom built with natural materials in rural area","authors":"Fatima Zahra Benaddi, L. Boukhattem, B. Benhamou, P. Tabares-Velasco, F. Nouh","doi":"10.1680/jener.21.00081","DOIUrl":null,"url":null,"abstract":"This work aims to highlight the indoor thermal comfort in a classroom building mostly built with locally available construction materials combined with some passive techniques in the hot semi-arid climate of Marrakech, Morocco. The thermal assessment of the so-called BATERRE building was analyzed against a Typical Building (TB) which represents the widest structure used in Moroccan rural classrooms and constructed with conventional materials. A TRNSYS based dynamic model was developed and validated using onsite monitoring measurements according to ASHRAE Guideline 14. Simulation results show that the BATERRE structure has a noticeable positive effect on indoor thermal comfort since its indoor air temperature remains stable while that of the TB classroom has higher oscillations. The hourly calculated indoor air temperature in BATERRE is greater by 3.6°C during winter and lower by 9.54°C during summer compared to the one in TB. Moreover, indoor thermal comfort analysis based on the ASHRAE Standard 55–2013 shows that BATERRE provides good indoor thermal comfort all year-round 63% of the time, while the corresponding indoor thermal comfort time part in TB is 32%. Furthermore, the annual thermal load of BATERRE is lower by 53% compared to that of TB.","PeriodicalId":48776,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Energy","volume":"31 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jener.21.00081","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
This work aims to highlight the indoor thermal comfort in a classroom building mostly built with locally available construction materials combined with some passive techniques in the hot semi-arid climate of Marrakech, Morocco. The thermal assessment of the so-called BATERRE building was analyzed against a Typical Building (TB) which represents the widest structure used in Moroccan rural classrooms and constructed with conventional materials. A TRNSYS based dynamic model was developed and validated using onsite monitoring measurements according to ASHRAE Guideline 14. Simulation results show that the BATERRE structure has a noticeable positive effect on indoor thermal comfort since its indoor air temperature remains stable while that of the TB classroom has higher oscillations. The hourly calculated indoor air temperature in BATERRE is greater by 3.6°C during winter and lower by 9.54°C during summer compared to the one in TB. Moreover, indoor thermal comfort analysis based on the ASHRAE Standard 55–2013 shows that BATERRE provides good indoor thermal comfort all year-round 63% of the time, while the corresponding indoor thermal comfort time part in TB is 32%. Furthermore, the annual thermal load of BATERRE is lower by 53% compared to that of TB.
期刊介绍:
Energy addresses the challenges of energy engineering in the 21st century. The journal publishes groundbreaking papers on energy provision by leading figures in industry and academia and provides a unique forum for discussion on everything from underground coal gasification to the practical implications of biofuels. The journal is a key resource for engineers and researchers working to meet the challenges of energy engineering. Topics addressed include: development of sustainable energy policy, energy efficiency in buildings, infrastructure and transport systems, renewable energy sources, operation and decommissioning of projects, and energy conservation.