On transversality of bent hyperplane arrangements and the topological expressiveness of ReLU neural networks

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
J. E. Grigsby, Kathryn A. Lindsey
{"title":"On transversality of bent hyperplane arrangements and the topological expressiveness of ReLU neural networks","authors":"J. E. Grigsby, Kathryn A. Lindsey","doi":"10.1137/20m1368902","DOIUrl":null,"url":null,"abstract":"Let F:R^n -> R be a feedforward ReLU neural network. It is well-known that for any choice of parameters, F is continuous and piecewise (affine) linear. We lay some foundations for a systematic investigation of how the architecture of F impacts the geometry and topology of its possible decision regions for binary classification tasks. Following the classical progression for smooth functions in differential topology, we first define the notion of a generic, transversal ReLU neural network and show that almost all ReLU networks are generic and transversal. We then define a partially-oriented linear 1-complex in the domain of F and identify properties of this complex that yield an obstruction to the existence of bounded connected components of a decision region. We use this obstruction to prove that a decision region of a generic, transversal ReLU network F: R^n -> R with a single hidden layer of dimension (n + 1) can have no more than one bounded connected component.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1368902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 14

Abstract

Let F:R^n -> R be a feedforward ReLU neural network. It is well-known that for any choice of parameters, F is continuous and piecewise (affine) linear. We lay some foundations for a systematic investigation of how the architecture of F impacts the geometry and topology of its possible decision regions for binary classification tasks. Following the classical progression for smooth functions in differential topology, we first define the notion of a generic, transversal ReLU neural network and show that almost all ReLU networks are generic and transversal. We then define a partially-oriented linear 1-complex in the domain of F and identify properties of this complex that yield an obstruction to the existence of bounded connected components of a decision region. We use this obstruction to prove that a decision region of a generic, transversal ReLU network F: R^n -> R with a single hidden layer of dimension (n + 1) can have no more than one bounded connected component.
弯曲超平面排列的横向性与ReLU神经网络的拓扑可表达性
设F:R^n -> R为前馈ReLU神经网络。众所周知,对于任何参数的选择,F都是连续的和分段(仿射)线性的。我们为系统地研究F的结构如何影响其可能的二元分类任务决策区域的几何和拓扑结构奠定了一些基础。根据微分拓扑中光滑函数的经典级数,我们首先定义了一般的、横向的ReLU神经网络的概念,并证明了几乎所有的ReLU神经网络都是一般的、横向的。然后,我们在F域中定义了一个部分定向的线性1-复形,并确定了该复形的性质,该性质阻碍了决策域中有界连通分量的存在。我们利用这一障碍证明了具有单个隐藏层(n + 1)的泛型、横向ReLU网络F: R^n -> R的决策区域可以有不超过一个有界连通分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信