Speeding-up a convolutional neural network by connecting an SVM network

J. Pasquet, M. Chaumont, G. Subsol, Mustapha Derras
{"title":"Speeding-up a convolutional neural network by connecting an SVM network","authors":"J. Pasquet, M. Chaumont, G. Subsol, Mustapha Derras","doi":"10.1109/ICIP.2016.7532766","DOIUrl":null,"url":null,"abstract":"Deep neural networks yield positive object detection results in aerial imaging. To deal with the massive computational time required, we propose to connect an SVM Network to the different feature maps of a CNN. After the training of this SVM Network, we use an activation path to cross the network in a predefined order. We stop the crossing as quickly as possible. This early exit from the CNN allows us to reduce the computational burden. Experimental results are obtained for an industrial application in urban object detection. We show that potentially the computation cost could be reduced by 98%. Additionally, performance is slightly improved; for example, for a 55% recall, precision increases by 5%.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"18 1","pages":"2286-2290"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Deep neural networks yield positive object detection results in aerial imaging. To deal with the massive computational time required, we propose to connect an SVM Network to the different feature maps of a CNN. After the training of this SVM Network, we use an activation path to cross the network in a predefined order. We stop the crossing as quickly as possible. This early exit from the CNN allows us to reduce the computational burden. Experimental results are obtained for an industrial application in urban object detection. We show that potentially the computation cost could be reduced by 98%. Additionally, performance is slightly improved; for example, for a 55% recall, precision increases by 5%.
通过连接支持向量机网络来加速卷积神经网络
深度神经网络在航空成像中产生积极的目标检测结果。为了处理所需的大量计算时间,我们建议将SVM网络与CNN的不同特征映射连接起来。在对SVM网络进行训练后,我们使用激活路径以预定的顺序穿越网络。我们要尽快停止穿越。CNN的提前退出让我们减少了计算负担。在城市目标检测的工业应用中,得到了实验结果。我们表明,潜在的计算成本可以减少98%。此外,性能略有提高;例如,对于55%的召回率,准确率提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信