Virtual high-throughput in silico screening

Markus H.J. Seifert, Kristina Wolf, Daniel Vitt
{"title":"Virtual high-throughput in silico screening","authors":"Markus H.J. Seifert,&nbsp;Kristina Wolf,&nbsp;Daniel Vitt","doi":"10.1016/S1478-5382(03)02359-X","DOIUrl":null,"url":null,"abstract":"<div><p><em>In silico</em> methods may benefit drug discovery and development significantly by saving an average of $130 million and 0.8 years per drug. Virtual high-throughput screening (vHTS) applies <em>in silico</em> approaches, such as docking and alignment, to large virtual molecular databases to enrich biologically active compounds in order to yield lead structures. In an industrial environment, the commonly used ligand-based and receptor-based methods outlined here need to be computationally faster to return the utmost benefit. Intelligent database searching using new fast feedback-driven screening methods appears to be particularly rewarding in terms of both cost and time benefits.</p></div>","PeriodicalId":9227,"journal":{"name":"Biosilico","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1478-5382(03)02359-X","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosilico","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147853820302359X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

In silico methods may benefit drug discovery and development significantly by saving an average of $130 million and 0.8 years per drug. Virtual high-throughput screening (vHTS) applies in silico approaches, such as docking and alignment, to large virtual molecular databases to enrich biologically active compounds in order to yield lead structures. In an industrial environment, the commonly used ligand-based and receptor-based methods outlined here need to be computationally faster to return the utmost benefit. Intelligent database searching using new fast feedback-driven screening methods appears to be particularly rewarding in terms of both cost and time benefits.

虚拟高通量硅筛选
计算机方法可以通过平均节省1.3亿美元和0.8年的时间,大大有利于药物的发现和开发。虚拟高通量筛选(vHTS)应用于大型虚拟分子数据库的对接和定位等硅方法,以丰富生物活性化合物,从而产生先导结构。在工业环境中,这里概述的常用的基于配体和基于受体的方法需要更快的计算速度才能获得最大的收益。使用新的快速反馈驱动筛选方法的智能数据库搜索似乎在成本和时间效益方面都特别有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信