Down the CLiFF: Flow-Aware Tralatory Planning Under Motion Pattern Uncertainty

Chittaranjan Srinivas Swaminathan, T. Kucner, Martin Magnusson, Luigi Palmieri, A. Lilienthal
{"title":"Down the CLiFF: Flow-Aware Tralatory Planning Under Motion Pattern Uncertainty","authors":"Chittaranjan Srinivas Swaminathan, T. Kucner, Martin Magnusson, Luigi Palmieri, A. Lilienthal","doi":"10.1109/IROS.2018.8593905","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of flow-aware trajectory planning in dynamic environments considering flow model uncertainty. Flow-aware planning aims to plan trajectories that adhere to existing flow motion patterns in the environment, with the goal to make robots more efficient, less intrusive and safer. We use a statistical model called CLiFF-map that can map flow patterns for both continuous media and discrete objects. We propose novel cost and biasing functions for an RRT* planning algorithm, which exploits all the information available in the CLiFF-map model, including uncertainties due to flow variability or partial observability. Qualitatively, a benefit of our approach is that it can also be tuned to yield trajectories with different qualities such as exploratory or cautious, depending on application requirements. Quantitatively, we demonstrate that our approach produces more flow-compliant trajectories, compared to two baselines.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"358 1","pages":"7403-7409"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8593905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper we address the problem of flow-aware trajectory planning in dynamic environments considering flow model uncertainty. Flow-aware planning aims to plan trajectories that adhere to existing flow motion patterns in the environment, with the goal to make robots more efficient, less intrusive and safer. We use a statistical model called CLiFF-map that can map flow patterns for both continuous media and discrete objects. We propose novel cost and biasing functions for an RRT* planning algorithm, which exploits all the information available in the CLiFF-map model, including uncertainties due to flow variability or partial observability. Qualitatively, a benefit of our approach is that it can also be tuned to yield trajectories with different qualities such as exploratory or cautious, depending on application requirements. Quantitatively, we demonstrate that our approach produces more flow-compliant trajectories, compared to two baselines.
下悬崖:运动模式不确定性下的流动感知的渐变计划
本文研究了动态环境下考虑流模型不确定性的流感知轨迹规划问题。流感知规划旨在规划符合环境中现有流运动模式的轨迹,目标是使机器人更高效、更少干扰和更安全。我们使用一种叫做CLiFF-map的统计模型,它可以映射连续介质和离散对象的流模式。我们为RRT*规划算法提出了新的成本和偏倚函数,该算法利用了CLiFF-map模型中可用的所有信息,包括由于流量可变性或部分可观测性引起的不确定性。从质量上讲,我们的方法的一个好处是,它也可以根据应用需求调整为具有不同质量的产出轨迹,例如探索性或谨慎性。定量地,我们证明了与两个基线相比,我们的方法产生了更多的流动顺应轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信