Solution of nonlinear boundary layer equation for flat plate via optimal homotopy asymptotic method

IF 4.9
F. Mabood, W. Khan, A. I. Ismail
{"title":"Solution of nonlinear boundary layer equation for flat plate via optimal homotopy asymptotic method","authors":"F. Mabood, W. Khan, A. I. Ismail","doi":"10.1002/htj.21070","DOIUrl":null,"url":null,"abstract":"In this article, we use the optimal homotopy asymptotic method (OHAM) to compute the solution of two‐dimensional incompressible laminar boundary layer flow over a flat plate (Blasius problem). The obtained results for the stream function and velocity profile were comparable in terms of accuracy with that obtained by Esmaeilpour and Ganji (2007) who studied the same problem using the homotopy perturbation method and results obtained by using a numerical method (RK4). The good agreement obtained shows the effectiveness of OHAM. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 197–203, 2014; Published online 19 June 2013 in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21070","PeriodicalId":47448,"journal":{"name":"Heat Transfer-Asian Research","volume":"14 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer-Asian Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/htj.21070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this article, we use the optimal homotopy asymptotic method (OHAM) to compute the solution of two‐dimensional incompressible laminar boundary layer flow over a flat plate (Blasius problem). The obtained results for the stream function and velocity profile were comparable in terms of accuracy with that obtained by Esmaeilpour and Ganji (2007) who studied the same problem using the homotopy perturbation method and results obtained by using a numerical method (RK4). The good agreement obtained shows the effectiveness of OHAM. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 197–203, 2014; Published online 19 June 2013 in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21070
平板非线性边界层方程的最优同伦渐近解
本文利用最优同伦渐近方法(OHAM)计算了平面上二维不可压缩层流边界层流动(Blasius问题)的解。得到的流函数和速度剖面的结果与esmailpour和Ganji(2007)使用同伦摄动方法和数值方法(RK4)研究相同问题的结果在精度上相当。所获得的良好一致性表明了OHAM的有效性。©2013 Wiley期刊公司热力学报,43(3):197-203,2014;2013年6月19日在线发表于Wiley在线图书馆(wileyonlinelibrary.com/journal/htj)。DOI 10.1002 / htj.21070
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信