{"title":"Cauchy problem of non-homogenous stochastic heat equation and application to inverse random source problem","authors":"Shuli Chen, Zewen Wang, Guo-Xin Chen","doi":"10.3934/IPI.2021008","DOIUrl":null,"url":null,"abstract":"In this paper, a Cauchy problem of non-homogenous stochastic heat equation is considered together with its inverse source problem, where the source term is assumed to be driven by an additive white noise. The Cauchy problem (direct problem) is to determine the displacement of random temperature field, while the considered inverse problem is to reconstruct the statistical properties of the random source, i.e. the mean and variance of the random source. It is proved constructively that the Cauchy problem has a unique mild solution, which is expressed an integral form. Then the inverse random source problem is formulated into two Fredholm integral equations of the first kind, which are typically ill-posed. To obtain stable inverse solutions, the regularized block Kaczmarz method is introduced to solve the two Fredholm integral equations. Finally, numerical experiments are given to show that the proposed method is efficient and robust for reconstructing the statistical properties of the random source.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"52 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a Cauchy problem of non-homogenous stochastic heat equation is considered together with its inverse source problem, where the source term is assumed to be driven by an additive white noise. The Cauchy problem (direct problem) is to determine the displacement of random temperature field, while the considered inverse problem is to reconstruct the statistical properties of the random source, i.e. the mean and variance of the random source. It is proved constructively that the Cauchy problem has a unique mild solution, which is expressed an integral form. Then the inverse random source problem is formulated into two Fredholm integral equations of the first kind, which are typically ill-posed. To obtain stable inverse solutions, the regularized block Kaczmarz method is introduced to solve the two Fredholm integral equations. Finally, numerical experiments are given to show that the proposed method is efficient and robust for reconstructing the statistical properties of the random source.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.