ɛ-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation

IF 3.2 4区 工程技术 Q2 CHEMISTRY, APPLIED
M. Walczak, J. Lubczak
{"title":"ɛ-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation","authors":"M. Walczak, J. Lubczak","doi":"10.1177/0021955X221092878","DOIUrl":null,"url":null,"abstract":"Copolymerization of pentaerythritol with five equivalents of ɛ-caprolactone leads to tetra-functional branched oligomer terminated with hydroxyl groups. The product was characterized by elemental analysis, IR and NMR spectroscopy, gel permeation chromatography and physical methods to determine viscosity, density and surface tension. The oligomer was then used to obtain rigid polyurethane foam. The foam was characterized by physicochemical methods to determine: apparent density, water uptake, polymerization shrinkage, heat conductance coefficient, thermal stability, compression strength and biodegradation. The foam obtained from this oligomer have the properties similar to classic rigid polyurethane foams but enhanced thermal resistance. It can stand long time heating at 175°C, while its compression strength increases upon thermal exposure. The foam and oligomer are biodegradable; the oligomer is fully decomposed within 28 days in soil, while the foam obtained from it is in the same conditions degradable up to 28% of initial mass.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"30 1","pages":"757 - 775"},"PeriodicalIF":3.2000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X221092878","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Copolymerization of pentaerythritol with five equivalents of ɛ-caprolactone leads to tetra-functional branched oligomer terminated with hydroxyl groups. The product was characterized by elemental analysis, IR and NMR spectroscopy, gel permeation chromatography and physical methods to determine viscosity, density and surface tension. The oligomer was then used to obtain rigid polyurethane foam. The foam was characterized by physicochemical methods to determine: apparent density, water uptake, polymerization shrinkage, heat conductance coefficient, thermal stability, compression strength and biodegradation. The foam obtained from this oligomer have the properties similar to classic rigid polyurethane foams but enhanced thermal resistance. It can stand long time heating at 175°C, while its compression strength increases upon thermal exposure. The foam and oligomer are biodegradable; the oligomer is fully decomposed within 28 days in soil, while the foam obtained from it is in the same conditions degradable up to 28% of initial mass.
制备硬质聚氨酯泡沫用己内酯季戊四醇衍生低聚物
季戊四醇与5个等价物-己内酯共聚得到端有羟基的四官能团支化低聚物。采用元素分析、红外和核磁共振光谱、凝胶渗透色谱和物理方法测定了产品的粘度、密度和表面张力。然后用该低聚物制备硬质聚氨酯泡沫。采用物理化学方法测定了泡沫的表观密度、吸水率、聚合收缩率、导热系数、热稳定性、抗压强度和生物降解性能。从这种低聚物获得的泡沫具有类似于经典硬质聚氨酯泡沫的性能,但增强了耐热性。它可以承受175℃的长时间加热,而热暴露时其抗压强度增加。泡沫和低聚物是可生物降解的;该低聚物在土壤中28天内完全分解,而在相同条件下,从其获得的泡沫可降解达初始质量的28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cellular Plastics
Journal of Cellular Plastics 工程技术-高分子科学
CiteScore
5.00
自引率
16.00%
发文量
19
审稿时长
3 months
期刊介绍: The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信